Wireless microphone

Last updated

Singer Sophia Abrahao using a handheld wireless microphone Sophia Abrahao in tour nel 2016.png
Singer Sophia Abrahão using a handheld wireless microphone
Singer Cody Simpson using a wireless microphone headset in a 2013 concert in Montreal Cody Simpson 2013.jpg
Singer Cody Simpson using a wireless microphone headset in a 2013 concert in Montreal

A wireless microphone, or cordless microphone, is a microphone without a physical cable connecting it directly to the sound recording or amplifying equipment with which it is associated. Also known as a radio microphone, it has a small, battery-powered radio transmitter in the microphone body, which transmits the audio signal from the microphone by radio waves to a nearby receiver unit, which recovers the audio. The other audio equipment is connected to the receiver unit by cable. In one type the transmitter is contained within the handheld microphone body. In another type the transmitter is contained within a separate unit called a "bodypack", usually clipped to the user's belt or concealed under their clothes. The bodypack is connected by wire to a "lavalier microphone" or "lav" (a small microphone clipped to the user's lapel), a headset or earset microphone, or another wired microphone. Most bodypack designs also support a wired instrument connection (e.g. to a guitar). Wireless microphones are widely used in the entertainment industry, television broadcasting, and public speaking to allow public speakers, interviewers, performers, and entertainers to move about freely while using a microphone without requiring a cable attached to the microphone.

Contents

Wireless microphones usually use the VHF or UHF radio frequency bands since they allow the transmitter to use a small unobtrusive antenna. Cheap units use a fixed frequency but most units allow a choice of several frequency channels, in case of interference on a channel or to allow the use of multiple microphones at the same time. FM modulation is usually used, although some models use digital modulation to prevent unauthorized reception by scanner radio receivers; these operate in the 900 MHz, 2.4 GHz or 6 GHz ISM bands. Some models use antenna diversity (two antennas) to prevent nulls from interrupting transmission as the performer moves around. A few low cost (or specialist) models use infrared light, although these require a direct line of sight between microphone and receiver.

History

Various individuals and organizations claim to be the inventors of the wireless microphone.

From about 1945 there were schematics and hobbyist kits offered in Popular Science and Popular Mechanics for making a wireless microphone that would transmit the voice to a nearby radio. [1] [2]

Figure skater and Royal Air Force flight engineer Reg Moores developed a radio microphone in 1947 that he first used in the Tom Arnold production "Aladdin on Ice" at Brighton's sports stadium from September 1949 through the Christmas season. Moores affixed the wireless transmitter to the costume of the character Abanazar, and it worked perfectly. Moores did not patent his idea, as he was illegally using the radio frequency 76 MHz. The producers of the ice show decided that they would not continue using the device; they would rather hire actors and singers to perform into hidden microphones to "dub" the voices of the other ice skaters, who would thus be free to concentrate on their skating. In 1972 Moores donated his 1947 prototype to the Science Museum in London. [3] [4] [5]

Herbert "Mac" McClelland, founder of McClelland Sound in Wichita, Kansas, fabricated a wireless microphone to be worn by baseball umpires at major league games broadcast by NBC from Lawrence–Dumont Stadium in 1951. [6] The transmitter was strapped to the umpire's back. Mac's brother was Harold M. McClelland, the chief communications architect of the U.S. Air Force.

Shure Brothers claims that its "Vagabond" system from 1953 was the first "wireless microphone system for performers." [7] Its field of coverage was a circle of "approximately 700 square feet", which corresponds to a line-of-sight distance of only 15 feet (4.6 m) from the receiver. [7]

In 1957, the German audio equipment manufacturer Sennheiser, at that time called Lab W, working with the German broadcaster Norddeutscher Rundfunk (NDR), exhibited a wireless microphone system. From 1958 the system was marketed through Telefunken under the name of Mikroport. The pocket-sized Mikroport incorporated a dynamic moving-coil cartridge microphone with a cardioid pickup pattern. It transmitted at 37 MHz with a specified range of 300 feet (90 m). [8]

The first recorded patent for a wireless microphone was filed by Raymond A. Litke, an American electrical engineer with Educational Media Resources and San Jose State College, who invented a wireless microphone in 1957 to meet the multimedia needs for television, radio, and classroom instruction. His U.S. patent number 3134074 was granted in May 1964. [9] Two microphone types were made available for purchase in 1959: hand-held and lavalier. The main transmitter module was a cigar-sized device which weighed 7 ounces (200 g). Vega Electronics Corporation manufactured the design in 1959, producing it as a product called the Vega-Mike. The device was first used by the broadcast media at the 1960 Democratic and Republican National Conventions. It allowed television reporters to roam the floor of the convention to interview participants, including presidential candidates John F. Kennedy and Richard Nixon.

Introduced in 1958, the Sony CR-4 wireless microphone was being recommended as early as 1960 for theater performances and nightclub acts. Animal trainers at Marineland of the Pacific in California were wearing the $250 device for performances in 1961. The 27.12 MHz solid-state FM transmitter was capable of fitting into a shirt pocket. Said to be effective out to 100 feet (30 m), it mounted a flexible dangling antenna and a detachable dynamic microphone. The tube-based receiver incorporated a carrying drawer for the transmitter and a small monitor loudspeaker with volume control. [10] [11]

Another German equipment manufacturer, Beyerdynamic, claims that the first wireless microphone was invented by Hung C. Lin. Called the "transistophone", it went into production in 1962. The first time that a wireless microphone was used to record sound during filming of a motion picture was allegedly on Rex Harrison in the 1964 film My Fair Lady, through the efforts of Academy Award-winning Hollywood sound engineer George Groves. [12]

Wider dynamic range came with the introduction of the first compander wireless microphone, offered by Nady Systems in 1976. Todd Rundgren and the Rolling Stones were the first popular musicians to use these systems live in concert. Kate Bush is regarded as the first artist to have had a headset with a wireless microphone built for use in music. For her Tour of Life in 1979 she had a compact microphone combined with a self-made construction of wire clothes hangers, to free her hands for expressionist dance performances. Her idea was adopted for live performance by other artists such as Madonna and Peter Gabriel. [13]

Nady joined CBS, Sennheiser and Vega in 1996 to receive a joint Emmy Award for "pioneering [the] development of the broadcast wireless microphone". [14]

Wireless microphones awaiting pickup by performers in a musical Radio mics.JPG
Wireless microphones awaiting pickup by performers in a musical

Techniques

The professional models transmit in VHF or UHF radio frequency and have 'true' diversity reception (two separate receiver modules, each with its own antenna), which eliminates dead spots (caused by phase cancellation) and the effects caused by the reflection of the radio waves on walls and surfaces in general. (See antenna diversity).

Another technique used to improve the sound quality (actually, to improve the dynamic range), is companding. Nady Systems, Inc. was the first to offer this technology in wireless microphones in 1976, which was based on the patent obtained by company founder John Nady.

Some models have adjustable gain on the microphone itself to be able to accommodate different level sources, such as loud instruments or quiet voices. Adjustable gain helps to avoid clipping and maximize signal to noise ratio.

Some models have adjustable squelch, which silences the output when the receiver does not get a strong or quality signal from the microphone, instead of reproducing noise. When squelch is adjusted, the threshold of the signal quality or level is adjusted.

Products

AKG Acoustics, Audio Ltd, Audio-Technica, Electro-Voice, Lectrosonics, MIPRO, Nady Systems, Inc, Samson Technologies, Sennheiser, Shure, Sony, Wisycom and Zaxcom are all major manufacturers of wireless microphone systems. They have made significant advances in dealing with many of the disadvantages listed above. For example, while there is a limited band in which the microphones may operate, several high-end systems can consist of over 100 different microphones operating simultaneously. However, the ability to have more microphones operating at the same time increases the cost due to component specifications, design and construction. That is one reason for such large price differences between different series of wireless systems.

Generally there are three wireless microphone types: handheld, plug-in and bodypack:

Several manufacturers including Sennheiser, AKG, Nady Systems, Lectrosonics and Zaxcom offer a plug-in transmitter for existing wired microphones, which plugs into the XLR output of the microphone and transmits to the manufacturer's standard receiver. This offers many of the benefits of an integrated system, and also allows microphone types (of which there may be no wireless equivalent) to be used without a cable. For example, a television, or film, sound production engineer may use a plug-in transmitter to enable wireless transmission of a highly directional rifle (or "shotgun") microphone, removing the safety hazard of a cable connection and permitting the production engineer greater freedom to follow the action. Plug-in transmitters also allow the conversion of vintage microphone types to cordless operation. This is useful where a vintage microphone is needed for visual or other artistic reasons, and the absence of cables allows for rapid scene changes and reducing trip hazards. In some cases these plug-in transmitters can also provide 48 volt phantom power allowing the use of condenser microphone types. DC-DC converter circuitry within the transmitter is used to multiply the battery supply, which may be three volts or less, up to the required 48 volts.

Receivers

Wireless microphone receiver racks backstage at a large televised music awards event Radio mic racks1.JPG
Wireless microphone receiver racks backstage at a large televised music awards event
Wireless microphone and radio receiver Radiomikrofon.jpg
Wireless microphone and radio receiver

There are many types of receiver. True Diversity receivers have two radio modules and two antennas. Diversity receivers have one radio module and two antennas, although some times the second antenna may not be obviously visible. Non-diversity receivers have only one antenna.

Receivers are commonly housed in a half-rack configuration, so that two can be mounted together in a rack system (that is to say the receiver is enclosed in a box 1U high and half-width, so two receivers can be installed in 1U). For large complex multi channel radio microphone systems, as used in broadcast television studios and musical theater productions, modular receiver systems with several (commonly six or eight) true diversity receivers slotting into a rack-mounted mainframe housing are available. Several mainframes may be used together in a rack to supply the number of receivers required. In some musical theater productions, systems with forty or more radio microphones are not unusual.

Receivers specifically for use with video cameras are often mounted in a bodypack configuration, typically with a hotshoe mount to be fitted onto the hotshoe of the camcorder. Small true diversity receivers which slot into a special housing on many professional broadcast standard video cameras are produced by manufacturers including Sennheiser, Lectrosonics and Sony. For less demanding or more budget conscious video applications small non-diversity receivers are common. When used at relatively short operating distances from the transmitter this arrangement gives adequate and reliable performance.

Bandwidth and spectrum

Almost all wireless microphone systems use wide band FM modulation, requiring approximately 200 kHz of bandwidth. Because of the relatively large bandwidth requirements, wireless microphone use is effectively restricted to VHF and above.

Many older wireless microphone systems operate in the VHF part of the electromagnetic spectrum. Systems operating in this range are often crystal-controlled, and therefore operate on a single frequency. However, if this frequency is chosen properly, the system will be able to operate for years without any problems.

Most modern wireless microphone products operate in the UHF television band, however. In the United States, this band extends from 470 to 614 MHz. In 2010 the Federal Communications Commission issued new regulations on the operations of TV-band devices. Other countries have similar band limits; for example, as of January 2014, Great Britain's UHF TV band extends from 470 to 790 MHz.[ citation needed ] Typically, wireless microphones operate on unused TV channels ("white spaces"), with room for one to two microphones per megahertz of spectrum available.

Intermodulation (IM) is a major problem when operating multiple systems in one location. IM occurs when two or more RF signals mix in a non-linear circuit, such as an oscillator or mixer. When this occurs, predictable combinations of these frequencies can occur. For example, the combinations 2A-B, 2B-A, and A+B-C might occur, where A, B, and C are the frequencies in operation. If one of these combinations is close to the operating frequency of another system (or one of the original frequencies A, B, or C), then interference will result on that channel. The solution to this problem is to manually calculate all of the possible products, or use a computer program that does this calculation automatically.

Digital Hybrid Wireless

Digital Hybrid systems use an analog FM transmission scheme in combination with digital signal processing (DSP) to enhance the system's audio. Using DSP allows the use of digital techniques impossible in the analog domain such as predictive algorithms, thus achieving a flatter frequency response in the audio spectrum and also further reducing noise and other undesirable artifacts when compared to pure analog systems.

Another approach is to use DSP in order to emulate analog companding schemes in order to maintain compatibility between older analog systems and newer systems. Using DSP in the receiver alone can improve the overall audio performance without the penalty of increased energy consumption and resulting battery life reduction that is incurred by incorporating DSP into a battery-powered transmitter.

Digital

A number of pure digital wireless microphone systems do exist, and there are many different digital modulation schemes possible.

Digital systems from Sennheiser, Sony, Shure, Zaxcom, AKG and MIPRO use the same UHF frequencies used by analog FM systems for transmission of a digital signal at a fixed bit rate. These systems encode an RF carrier with one channel, or in some cases two channels, of digital audio. Only the Sennheiser Digital 9000 system, introduced in 2013, is currently capable of transmitting full-bandwidth, uncompressed, digital audio in the same 200 kHz bandwidth UHF channels that were used by analog FM systems. [15] The advantages offered by purely digital systems include low noise, low distortion, the opportunity for encryption, and enhanced transmission reliability.

Pure digital systems take various forms. Some systems use frequency-hopping spread spectrum technology, similar to that used for cordless phones and radio-controlled models. As this can require more bandwidth than a wideband FM signal, these microphones typically operate in the unlicensed 900 MHz, 2.4 GHz or 6 GHz bands. The absence of any requirement for a license in these frequency bands is an added attraction for many users, regardless of the technology used. The 900 MHz band is not an option outside of the US and Canada as it is used by GSM cellular mobile phone networks in most other parts of the world. The 2.4 GHz band is increasingly congested with various systems including Wi-Fi, Bluetooth and leakage from microwave ovens. The 6 GHz band has problems of range (requires line of sight) due to the extremely short transmission carrier wavelengths. The Alteros GTX Series is a local area wireless microphone network that overcomes the line-of-sight problem by utilizing up to 64 transceivers around the performance area. It is also the only system employing Ultra WideBand pulsed RF technology which doesn't generate intermodulation products common with FM, QAM and GFSK modulated carriers used by most other systems.

Digital radio microphones are inherently more difficult for the casual 'scanner' listener to intercept because conventional "scanning receivers" are generally only capable of de-modulating conventional analog modulation schemes such as FM and AM. However, some digital wireless microphone systems additionally offer encryption technology in an attempt to prevent more serious 'eavesdropping' which may be of concern for corporate users and those using radio microphones in security sensitive situations.

Manufacturers currently offering digital wireless microphone systems include AKG-Acoustics, Alteros, Audio-Technica, Lectrosonics, Line 6, MIPRO, Shure, Sony, Sennheiser and Zaxcom. All are using different digital modulation schemes from each other.

Licensing

United Kingdom

In the UK, use of wireless microphone systems requires a Wireless Telegraphy Act license, except for the license free bands of 173.8–175.0 MHz and 863–865 MHz. In 2013 the UK communications regulator, Ofcom, held an auction in which the UHF band from 790 MHz to 862 MHz was sold to be used for mobile broadband services. [16] [17] [18]

United States

Licenses are required to use wireless microphones on vacant TV channels in the United States as they are a part of the Broadcast Auxiliary Service (BAS). Licenses are available only to broadcasters, cable networks, television and film producers.

There are currently some wireless microphone manufacturers that are marketing wireless microphones for use in the United States that operate within the 944–952 MHz band reserved for studio-transmitter link communications. Beginning in 2017, the amount of TV band spectrum available for wireless microphone use is decreasing as a result of the incentive auction, which was completed on April 13, 2017.

Australia

In Australia, operation of wireless microphones of up to 100 mW EIRP between 520 and 694 MHz is on unused television channels and is covered by a class license, allowing any user to operate the devices without obtaining an individual license.[ citation needed ]

Other countries

Licensing in European countries is regulated by the Electronic Communications Committee (ECC) which is part of the European Conference of Postal and Telecommunications Administrations (CEPT) based in Denmark. [19]

White Space Devices (United States)

There is a move to allow the operation of personal unlicensed wideband digital devices using the UHF television spectrum in the United States. These 'white space' devices (WSDs) would be required to have GPS and access to a location database to avoid interfering with other users of the band. Initial tests performed by the FCC showed that, in some cases, prototypes of these devices were unable to correctly identify frequencies that were in use, and might therefore accidentally transmit on top of these users. Broadcasters, theaters, and wireless microphone manufacturers were firmly against these types of devices ostensibly for this reason.

Later tests by the FCC indicated that the devices could safely be used. [20] This did not reduce the opposition by broadcasters who might also have been concerned by the possibility of entertainment delivery competition from high-speed mobile Internet access delivered in the white spaces.

On September 23, 2010, the FCC released a Memorandum Opinion and Order that determined the final rules for the use of white space for unlicensed wireless devices. [21] The final rules adopt a proposal from the White Spaces Coalition. [22]

Cognitive Access (UK)

A similar class of device to those known in the US as White Space Devices (WSD) is being researched in the UK and probably many other countries. While the WSD situation in the US is being closely watched by interested parties in the UK and elsewhere, early in 2009 Ofcom launched research and a public consultation on Cognitive Access to the UHF interleaved spectrum. [23] The outcome of this consultation and the related WSD activities in the US could have far reaching implications for users of UHF radio microphones in the UK and around the world.

See also

Related Research Articles

<span class="mw-page-title-main">Transmitter</span> Electronic device that emits radio waves

In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna with the purpose of signal transmission up to a radio receiver. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

<span class="mw-page-title-main">Very high frequency</span> Electromagnetic wave range of 30-300 MHz

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

<span class="mw-page-title-main">Ultra high frequency</span> Electromagnetic spectrum 300–3000 MHz

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, satellite phones, and numerous other applications.

<span class="mw-page-title-main">Digital radio</span> Use of digital technology to transmit or receive across the radio spectrum

Digital radio is the use of digital technology to transmit or receive across the radio spectrum. Digital transmission by radio waves includes digital broadcasting, and especially digital audio radio services.

<span class="mw-page-title-main">Walkie-talkie</span> Hand-held portable two-way communications device

A walkie-talkie, more formally known as a handheld transceiver, HT, or handheld radio, is a hand-held, portable, two-way radio transceiver. Its development during the Second World War has been variously credited to Donald Hings, radio engineer Alfred J. Gross, Henryk Magnuski and engineering teams at Motorola. First used for infantry, similar designs were created for field artillery and tank units, and after the war, walkie-talkies spread to public safety and eventually commercial and jobsite work.

<span class="mw-page-title-main">Amateur television</span> Transmission of video in amateur radio bands

Amateur television (ATV) is the transmission of broadcast quality video and audio over the wide range of frequencies of radio waves allocated for radio amateur (Ham) use. ATV is used for non-commercial experimentation, pleasure, and public service events. Ham TV stations were on the air in many cities before commercial television stations came on the air. Various transmission standards are used, these include the broadcast transmission standards of NTSC in North America and Japan, and PAL or SECAM elsewhere, utilizing the full refresh rates of those standards. ATV includes the study of building of such transmitters and receivers, and the study of radio propagation of signals travelling between transmitting and receiving stations.

<span class="mw-page-title-main">Radio receiver</span> Device for receiving radio broadcasts

In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

Code of Federal Regulations, Title 47, Part 15 is an oft-quoted part of Federal Communications Commission (FCC) rules and regulations regarding unlicensed transmissions. It is a part of Title 47 of the Code of Federal Regulations (CFR), and regulates everything from spurious emissions to unlicensed low-power broadcasting. Nearly every electronics device sold inside the United States radiates unintentional emissions, and must be reviewed to comply with Part 15 before it can be advertised or sold in the US market.

The radio spectrum is the part of the electromagnetic spectrum with frequencies from 3 Hz to 3,000 GHz (3 THz). Electromagnetic waves in this frequency range, called radio waves, are widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).

<span class="mw-page-title-main">Cordless telephone</span> Portable telephone that connects to a landline

A cordless telephone or portable telephone has a portable telephone handset that connects by radio to a base station connected to the public telephone network. The operational range is limited, usually to the same building or within some short distance from the base station.

<span class="mw-page-title-main">Baby monitor</span> Radio system for remotely listening to a child

A baby monitor, also known as a baby alarm, is a radio system used to remotely listen to sounds made by an infant. An audio monitor consists of a transmitter unit, equipped with a microphone, placed near to the child. It transmits the sounds by radio waves to a receiver unit with a speaker carried by, or near to, the person caring for the infant. Some baby monitors provide two-way communication which allows the parent to speak back to the baby. Some allow music to be played to the child. A monitor with a video camera and receiver is often called a baby cam.

<span class="mw-page-title-main">FM broadcasting</span> Radio transmission of audio by frequency modulation

FM broadcasting is a method of radio broadcasting that uses frequency modulation (FM) of the radio broadcast carrier wave. Invented in 1933 by American engineer Edwin Armstrong, wide-band FM is used worldwide to transmit high-fidelity sound over broadcast radio. FM broadcasting offers higher fidelity—more accurate reproduction of the original program sound—than other broadcasting techniques, such as AM broadcasting. It is also less susceptible to common forms of interference, having less static and popping sounds than are often heard on AM. Therefore, FM is used for most broadcasts of music and general audio. FM radio stations use the very high frequency range of radio frequencies.

A land mobile radio system (LMRS) is a person-to-person voice communication system consisting of two-way radio transceivers which can be stationary, mobile, or portable.

A radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. Radio waves are electromagnetic waves with frequencies between about 30 Hz and 300 GHz. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary parts of all systems that use radio: radio and television broadcasting, cell phones, wireless networks, radar, two way radios like walkie talkies, radio navigation systems like GPS, remote entry systems, among numerous other uses.

In telecommunications, white spaces refer to radio frequencies allocated to a broadcasting service but not used locally. National and international bodies assign frequencies for specific uses and, in most cases, license the rights to broadcast over these frequencies. This frequency allocation process creates a bandplan which for technical reasons assigns white space between used radio bands or channels to avoid interference. In this case, while the frequencies are unused, they have been specifically assigned for a purpose, such as a guard band. Most commonly however, these white spaces exist naturally between used channels, since assigning nearby transmissions to immediately adjacent channels will cause destructive interference to both.

<span class="mw-page-title-main">Radio</span> Use of radio waves to carry information

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave. They can be received by other antennas connected to a radio receiver; this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

There are several uses of the 2.4 GHz ISM radio band. Interference may occur between devices operating at 2.4 GHz. This article details the different users of the 2.4 GHz band, how they cause interference to other users and how they are prone to interference from other users.

The 800 MHz frequency band is a portion of the electromagnetic spectrum, or frequency band, that encompasses 790–862 MHz.

The Pan-American television frequencies are different for terrestrial and cable television systems. Terrestrial television channels are divided into two bands: the VHF band which comprises channels 2 through 13 and occupies frequencies between 54 and 216 MHz, and the UHF band, which comprises channels 14 through 36 and occupies frequencies between 470 and 608 MHz. These bands are different enough in frequency that they often require separate antennas to receive, and separate tuning controls on the television set. The VHF band is further divided into two frequency ranges: VHF low band between 54 and 88 MHz, containing channels 2 through 6, and VHF high band between 174 and 216 MHz, containing channels 7 through 13. The wide spacing between these frequency bands is responsible for the complicated design of rooftop TV antennas. The UHF band has higher noise and greater attenuation, so higher gain antennas are often required for UHF.

Wireless microphones may operate over various frequencies, licensed or unlicensed depending upon the country.

References

  1. "Ultra-Mike". Popular Mechanics. Vol. 87, no. 6. June 1947. p. 263. ISSN   0032-4558.
  2. "Wireless Mike Puts You on the Air". Popular Science. Vol. 153, no. 5. November 1948. pp. 224–225. ISSN   0161-7370.
  3. "Reg Moores". The Telegraph. January 17, 2012.
  4. Robertson, Patrick (2011). Robertson's Book of Firsts: Who Did What for the First Time. Bloomsbury Publishing USA. p. 735. ISBN   978-1-60819-738-5.
  5. Guinness Book of World Records. Sterling. 1989. p. 148.
  6. McClelland Sound History: 1940–1950. Archived 2010-01-15 at the Wayback Machine Retrieved on January 14, 2010.
  7. 1 2 "History". Shure. Retrieved January 17, 2012.
  8. The Wireless World. Marconi House: 164. 1959.{{cite journal}}: Missing or empty |title= (help)[ title missing ]
  9. Litke's wireless microphone patent
  10. Theatre Arts. 45: 74. 1961.{{cite journal}}: Missing or empty |title= (help)[ title missing ]
  11. "Equipment Profile: Sony Wireless Microphone, Model CR-4". Audio. 44. Radio Magazine: 44. 1960.
  12. George Groves Sound History Making of My Fair Lady. Archived 2017-10-29 at the Wayback Machine Retrieved on February 1, 2011.
  13. Laborey, Claire (2019). "Kate Bush  Stimmgewaltig und exzentrisch (=Kate Bush  Vocally powerful and eccentric)" (in German). ARTE France. Archived from the original on 21 September 2019. Retrieved 21 September 2019.
  14. "NATAS Engineering Awards Listing" (PDF). National Academy of Television Arts and Sciences. January 2005. Archived from the original (PDF) on April 14, 2010. Retrieved January 17, 2012.
  15. "Sennheiser Digital 9000 Wireless Microphone System - Studios Broadcast, Theatres, Live Performance - Professional Audio Equipment".
  16. "Spectrum Awards". 26 May 2021.
  17. "Award of the 800 MHz and 2.6 GHz Spectrum Bands" (PDF). Retrieved 2023-10-05.
  18. "Digital dividend: Clearing the 800 MHZ band | Ofcom". Archived from the original on 2010-05-14. Retrieved 2009-05-02.
  19. "European Conference of Postal and Telecommunications Administrations". Cept.org.
  20. "Evaluation of the Performance of Prototype TV - Band White Space Devices Phase II" (PDF). Retrieved 2023-10-05.
  21. "FCC Second Memorandum and Order, September 23, 2010" (PDF). FCC.
  22. "In the Matters of Unlicensed Operation in the TV Broadcast Bands". Archived from the original on 2013-04-09. Retrieved 2023-10-04.
  23. "Digital Dividend: Cognitive Access". Ofcom. Archived from the original on 2009-09-03.