Clipping (audio)

Last updated
The altered peaks and troughs of the sine wave form displayed on this oscilloscope indicate the signal has been "clipped." Clipping 1KHz 10V DIV clip A 5ohms-1-.jpg
The altered peaks and troughs of the sine wave form displayed on this oscilloscope indicate the signal has been "clipped."

Clipping is a form of waveform distortion that occurs when an amplifier is overdriven and attempts to deliver an output voltage or current beyond its maximum capability. Driving an amplifier into clipping may cause it to output power in excess of its power rating.

Contents

In the frequency domain, clipping produces strong harmonics in the high-frequency range (as the clipped waveform comes closer to a squarewave). The extra high-frequency weighting of the signal could make tweeter damage more likely than if the signal was not clipped.

In most cases, the distortion associated with clipping is unwanted, and is visible on an oscilloscope even if it is inaudible. [1] However, clipping is often used in music for artistic effect, particularly guitar-dominant genres like blues, rock, and metal.

Overview

When an amplifier is pushed to create a signal with more power than its power supply can produce, it will amplify the signal only up to its maximum capacity, at which point the signal can be amplified no further. As the signal simply "cuts" or "clips" at the maximum capacity of the amplifier, the signal is said to be "clipping". The extra signal which is beyond the capability of the amplifier is simply cut off, resulting in a sine wave becoming a distorted square-wave-type waveform.

Amplifiers have voltage, current and thermal limits. Clipping may occur due to limitations in the power supply or the output stage. Some amplifiers are able to deliver peak power without clipping for short durations before energy stored in the power supply is depleted or the amplifier begins to overheat.

Sound

Many electric guitar players intentionally overdrive their amplifiers (or insert a "fuzz box") to cause clipping in order to get a desired sound (see guitar distortion).

Some audiophiles believe that the clipping behavior of vacuum tubes with little or no negative feedback is superior to that of transistors, in that vacuum tubes clip more gradually than transistors (i.e.soft clipping, and mostly even harmonics), resulting in harmonic distortion that is generally less objectionable.

Effects

Difference between clipped and maximum unclipped waveforms Clipping 1dB.png
Difference between clipped and maximum unclipped waveforms
Spectrograph showing the odd-order harmonics of a sine wave pushed into hard clipping Spectrogram of 40 Hz sine wave 1 dB into hard clipping.jpg
Spectrograph showing the odd-order harmonics of a sine wave pushed into hard clipping

In a transistorized amplifier with hard clipping, the gain of the transistor will be reducing (leading to nonlinear distortion) as the output current increases and the voltage across the transistor reduces close to the saturation voltage (for bipolar transistors), and so "full power" for the purposes of measuring distortion in amplifiers is usually taken as a few percent below clipping.

Because the clipped waveform has more area underneath it than the smaller unclipped waveform, the amplifier produces more power than its rated (sine wave) output when it is clipping. This extra power can damage the loudspeaker. It may cause damage to the amplifier's power supply or simply blow a fuse.

The additional high frequency energy in the harmonics generated by an amplifier operating in clipping can damage the tweeter in a connected loudspeaker via overheating. [2] [3]

Clipping can occur within a system as processing (e.g. an all-pass filter) can change the phase relationship between spectral components of a signal in such a way as to create excessive peak outputs. The excessive peaks may become clipped even though the system can play any simple sine wave signals of the same level without clipping.

Electric guitarists frequently and intentionally overdrive their guitar amplifiers to cause clipping and other distortion in order to get a desired sound.

Digital clipping

Clipped digital (PCM) waveform Clipping.svg
Clipped digital (PCM) waveform

In digital signal processing, clipping occurs when the signal is restricted by the range of a chosen representation. For example, in a system using 16-bit signed integers, 32767 is the largest positive value that can be represented. If, during processing, the amplitude of the signal is doubled, sample values of, for instance, 32000 should become 64000, but instead cause an integer overflow and saturate to the maximum, 32767. Clipping is preferable to the alternative in digital systems—wrapping—which occurs if the digital processor is allowed to overflow, ignoring the most significant bits of the magnitude, and sometimes even the sign of the sample value, resulting in gross distortion of the signal.

Avoiding clipping

The simplest way to avoid clipping is to reduce the signal level. Alternatively the system can be improved to support higher signal level without clipping. Some audiophiles will use amplifiers that are rated for power outputs over twice the speaker's ratings. A limiter can be used to dynamically bring the levels of the loud parts of a signal down (for example, bass and snare drums).

Many amplifier designers have incorporated circuits to prevent clipping. The simplest circuits act like a fast limiter, which engages about one decibel before the clipping point. A more complex circuit, called "soft-clip", has been used from the 1980s onward to limit the signal at the input stage. The soft-clip feature begins to engage prior to clipping, for instance starting at 10 dB below maximum output power. The output waveform retains a rounded characteristic even in the presence of an overload input signal as much as 10 dB higher than maximum specified. [4] [5]

Repairing a clipped signal

It is preferable to avoid clipping, but if a recording has clipped, and cannot be re-recorded, repair is an option. The goal of repair is to make up a plausible replacement for the clipped part of the signal.

Complex hard-clipped signals cannot be restored to their original state because the information contained in the peaks that are clipped is completely lost. Soft-clipped signals can be restored to their original state to within a case-dependent tolerance because no part of the original signal is completely lost. In this case, the degree of information loss is proportional to the degree of compression caused by the clipping. Lightly clipped bandwidth-limited signals that are highly oversampled have the potential for perfect repair. [6]

Several methods can partially restore a clipped signal. Once the clipped portion is known, one can attempt partial recovery. One such method is interpolation or extrapolation of known samples. Advanced implementations may use cubic splines to attempt to restore a continuously differentiable signal. While these reconstructions are only an approximation of the original, the subjective quality may be improved. Other methods include copying the signal directly from one stereo channel to another, as it may be the case that only one channel is clipped.

Several software solutions of varying results and methods exist to repair clipping: CrumplePop ClipRemover, MAGIX Sound Forge, iZotope RX De-Clip, Acon Digital Restoration Suite, [7] Adobe Audition, Thimeo Stereo Tool, declipping solutions from CEDAR Audio, [8] and Audacity plugins such as Clip Fix.

Causes

In analog audio equipment, there are several causes of clipping:

  1. The peak-to-peak output of a solid-state transformerless amplifier is limited by the power supply voltage. [lower-alpha 1]
  2. An amplifier may have an asymmetrical output swing [lower-alpha 2] and clipping may begin earlier on one half of the output waveform.
  3. In audio amplifiers using unregulated linear power supplies, if the filter capacitor is not large enough, it is possible for ripple voltage to cause clipping that also contains some AC line frequency harmonics. In a switched-mode power supply the switching frequency is more dominant in the ripple voltage and outside the audio band while in a regulated power supply the ripple voltage is rejected.
  4. A vacuum tube can only move a limited number of electrons in a given amount of time, dependent on its size, temperature, and metals. The resulting fall-off in amplification with increasing output current results in soft clipping.
  5. Amplifying devices may also have limits on their inputs, for example excessive base current to a bipolar transistor or excessive grid current to a vacuum tube. Operating outside these limits can distort the input signal, if it comes from a high enough impedance source, or damage the amplifying device requiring a limiting circuit for protection; see below.
  6. An amplifier may limit its current output, or the input voltage, for a variety of reasons both intentional or not. Intentional limiting circuits would not be expected to come into effect in normal operation, but only when the output load resistance is too low or the input signal level is exceptionally high, for example. The result of this form of clipping might not create a flat top to the voltage waveform, but rather a flat top to the current waveform.
  7. A transformer (most commonly used between stages and at the output in tube equipment) will clip when its ferromagnetic core becomes electromagnetically saturated.

Detection

Clipping in a circuit can be detected by comparing the original input signal with an output signal with adjustment for applied gain. For instance, if a circuit has 10 dB of applied gain, it can be tested for clipping by attenuating the output signal by 10 dB and comparing it to the input signal. The difference between the two signals can be used to illuminate clipping detection indicators and can be used to decrease the gain of a preceding circuit to manage clipping. [9]

Clipped signals will often be squarized, where third harmonics are contextual outliers in a Fourier Transform. In the case of an expected sine wave, the presence of odd harmonics will often suggest the signal has been hard clipped. A “soft clip” will have a knee on both sides of the plateau, which will show the presence of several even overtones in the lower frequency spectrum.

See also

Notes

  1. This includes most integrated circuit and discrete solid state circuits. The limitation relative to the power supply voltage depends on the design of the circuit (especially the driver configuration) and the saturation voltage (Vce(sat) for bipolar transistors, or Rds(on) for Field Effect Transistors), and further reduced if the output stage does not have a quiescent DC output voltage set to half the supply voltage. For example, with a typical operational amplifier the Absolute Maximum Rating for the supply voltage is 36 volts, and a safe operating design supply voltage is 30 volts; if this was supplied as a perfectly balanced +15V and -15V then the theoretical peak output for an ideal rail-to-rail opamp would be 15 Volts peak (10.6V RMS, 30V peak-to-peak), but a real-world opamp such as the 741 is likely to only be able to drive about 10 volts peak into loads above 2 kilohms, i.e. about 7.1V RMS).
  2. Possibly because a transistor is biased so its collector voltage is not half the supply voltage (or the "balanced" power supply rails aren't perfectly balanced). Bootstrapping or a redesign of the circuit may alleviate this when it is caused by difficulties in driving emitter follower output stages.

Related Research Articles

In electronics, the figures of merit of an amplifier are numerical measures that characterize its properties and performance. Figures of merit can be given as a list of specifications that include properties such as gain, bandwidth, noise and linearity, among others listed in this article. Figures of merit are important for determining the suitability of a particular amplifier for an intended use.

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

In signal processing, distortion is the alteration of the original shape of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signal representing sound or a video signal representing images, in an electronic device or communication channel.

Audio power is the electrical power transferred from an audio amplifier to a loudspeaker, measured in watts. The electrical power delivered to the loudspeaker, together with its efficiency, determines the sound power generated.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

<span class="mw-page-title-main">Limiter</span> Electronic amplitude limiting device

In electronics, a limiter is a circuit that allows signals below a specified input power or level to pass unaffected while attenuating (lowering) the peaks of stronger signals that exceed this threshold. Limiting is a type of dynamic range compression. Clipping is an extreme version of limiting.

<span class="mw-page-title-main">Push–pull output</span> Type of electronic circuit

A push–pull amplifier is a type of electronic circuit that uses a pair of active devices that alternately supply current to, or absorb current from, a connected load. This kind of amplifier can enhance both the load capacity and switching speed.

In electronics, a frequency multiplier is an electronic circuit that generates an output signal and that output frequency is a harmonic (multiple) of its input frequency. Frequency multipliers consist of a nonlinear circuit that distorts the input signal and consequently generates harmonics of the input signal. A subsequent bandpass filter selects the desired harmonic frequency and removes the unwanted fundamental and other harmonics from the output.

The linear range is that range of input or output values for which an electronic amplifier produces an output signal that is a direct, linear function of the input signal. That is, the output can be represented by the equation:

In signal processing, when describing a periodic function in the time domain, the DC bias, DC component, DC offset, or DC coefficient is the mean value of the waveform. A waveform with zero mean or no DC bias is known as a DC balanced or DC free waveform.

<span class="mw-page-title-main">Class-D amplifier</span> Audio amplifier based on switching

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices operate as electronic switches, and not as linear gain devices as in other amplifiers. They operate by rapidly switching back and forth between the supply rails, using pulse-width modulation, pulse-density modulation, or related techniques to produce a pulse train output. This passes through a simple low-pass filter which blocks the high-frequency pulses and provides analog output current and voltage. Because they are always either in fully on or fully off modes, little energy is dissipated in the transistors and efficiency can exceed 90%.

In electronics, motorboating is a type of low frequency parasitic oscillation that sometimes occurs in audio and radio equipment and often manifests itself as a sound similar to an idling motorboat engine, a "put-put-put", in audio output from speakers or earphones. It is a problem encountered particularly in radio transceivers and older vacuum tube audio systems, guitar amplifiers, PA systems and is caused by some type of unwanted feedback in the circuit. The amplifying devices in audio and radio equipment are vulnerable to a variety of feedback problems, which can cause distinctive noise in the output. The term motorboating is applied to oscillations whose frequency is below the range of hearing, from 1 to 10 hertz, so the individual oscillations are heard as pulses. Sometimes the oscillations can even be seen visually as the woofer cones in speakers slowly moving in and out.

<span class="mw-page-title-main">Gain compression</span> Reduction in gain due to nonlinearity

Gain compression is a reduction in differential or slope gain caused by nonlinearity of the transfer function of the amplifying device. This nonlinearity may be caused by heat due to power dissipation or by overdriving the active device beyond its linear region. It is a large-signal phenomenon of circuits.

<span class="mw-page-title-main">Distortion (music)</span> Type of electronic audio manipulation

Distortion and overdrive are forms of audio signal processing used to alter the sound of amplified electric musical instruments, usually by increasing their gain, producing a "fuzzy", "growling", or "gritty" tone. Distortion is most commonly used with the electric guitar, but may also be used with other electric instruments such as electric bass, electric piano, synthesizer and Hammond organ. Guitarists playing electric blues originally obtained an overdriven sound by turning up their vacuum tube-powered guitar amplifiers to high volumes, which caused the signal to distort. While overdriven tube amps are still used to obtain overdrive, especially in genres like blues and rockabilly, a number of other ways to produce distortion have been developed since the 1960s, such as distortion effect pedals. The growling tone of a distorted electric guitar is a key part of many genres, including blues and many rock music genres, notably hard rock, punk rock, hardcore punk, acid rock, and heavy metal music, while the use of distorted bass has been essential in a genre of hip hop music and alternative hip hop known as "SoundCloud rap".

<span class="mw-page-title-main">Biasing</span> Predetermined voltages or currents establishing proper operating conditions in electronic components

In electronics, biasing is the setting of DC operating conditions of an electronic component that processes time-varying signals. Many electronic devices, such as diodes, transistors and vacuum tubes, whose function is processing time-varying (AC) signals, also require a steady (DC) current or voltage at their terminals to operate correctly. This current or voltage is called bias. The AC signal applied to them is superposed on this DC bias current or voltage.

<span class="mw-page-title-main">Clipping (signal processing)</span> Form of distortion that limits a signal in processing

Clipping is a form of distortion that limits a signal once it exceeds a threshold. Clipping may occur when a signal is recorded by a sensor that has constraints on the range of data it can measure, it can occur when a signal is digitized, or it can occur any other time an analog or digital signal is transformed, particularly in the presence of gain or overshoot and undershoot.

<span class="mw-page-title-main">Tube sound</span> Characteristic quality of sounds from vacuum tube amplifiers

Tube sound is the characteristic sound associated with a vacuum tube amplifier, a vacuum tube-based audio amplifier. At first, the concept of tube sound did not exist, because practically all electronic amplification of audio signals was done with vacuum tubes and other comparable methods were not known or used. After introduction of solid state amplifiers, tube sound appeared as the logical complement of transistor sound, which had some negative connotations due to crossover distortion in early transistor amplifiers. However, solid state amplifiers have been developed to be flawless and the sound is later regarded neutral compared to tube amplifiers. Thus the tube sound now means 'euphonic distortion.' The audible significance of tube amplification on audio signals is a subject of continuing debate among audio enthusiasts.

In electronics, power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier's characteristics and performance. The first three classes are related to the time period that the active amplifier device is passing current, expressed as a fraction of the period of a signal waveform applied to the input. This metric is known as conduction angle (θ). A class A amplifier is conducting through all the period of the signal (θ=360°); Class B only for one-half the input period (θ=180°), class C for much less than half the input period (θ<180°). Class D amplifiers operate their output device in a switching manner; the fraction of the time that the device is conducting may be adjusted so a pulse-width modulation output can be obtained from the stage.

<span class="mw-page-title-main">Diamond buffer</span>

The diamond buffer or diamond follower is a four-transistor, two-stage, push-pull, translinear emitter follower, or less commonly source follower, in which the input transistors are folded, or placed upside-down with respect to the output transistors. Like any unity buffer, the diamond buffer does not alter the phase and magnitude of input voltage signal; its primary purpose is to interface a high-impedance voltage source with a low-impedance, high-current load. Unlike the more common compound emitter follower, where each input transistor drives the output transistor of the same polarity, each input transistor of a diamond buffer drives the output transistor of the opposite polarity. When the transistors operate in close thermal contact, the input transistors stabilize the idle current of the output pair, eliminating the need for a bias spreader.

References

  1. Zottola, Tino (1996). Vacuum Tube and Guitar and Bass Amplifier Servicing. Bold Strummer. p. 6. ISBN   0-933224-97-4.
  2. Jim Lesurf. "Clipping tweeter damage" . Retrieved 2018-03-05.
  3. Chuck McGregor (2017-08-24). "Why Should We Care About Power Amplifier Clipping?" . Retrieved 2018-03-05.
  4. Duncan, Ben (1996). High Performance Audio Power Amplifiers . Newnes. pp.  79–80. ISBN   9780080508047.
  5. Duncan, Ben (2009). "Interfacing and Processing". In Douglas Self; Ben Duncan; Ian Sinclair; Richard Brice; John Linsley Hood; Andrew Singmin; Don Davis; Eugene Patronis; John Watkinson (eds.). Audio Engineering: Know It All. Vol. 1. Newnes. p. 278. ISBN   9780080949642.
  6. Donoho, David L.; Philip B. Stark (June 1989). "Uncertainty principles and signal recovery". SIAM Journal on Applied Mathematics. Society for Industrial and Applied Mathematics. 49 (3): 906–931. doi:10.1137/0149053. ISSN   0036-1399.
  7. "Acon Digital DeClip". Acon Digital. Retrieved 2022-12-13.
  8. "Declip". CEDAR Audio. Retrieved 2018-09-13.
  9. US 5430409,"Amplifier clipping distortion indicator with adjustable supply dependence"