Scavenger resin

Last updated
Example of a benzaldehyde scavenger resin PSBenzealdehyde.jpg
Example of a benzaldehyde scavenger resin

Scavenger resins are polymers (resins) with bound functional groups that react with specific by-products, impurities, or excess reagents produced in a reaction. Polymer-bound functional groups permit the use of many different scavengers, as the functional groups are confined within a resin or are simply bound to the solid support of a bead. Simply, the functional groups of one scavenger will react minimally with the functional groups of another. [1] [2]

Contents

Applications

Employment of scavenger resins has become increasingly popular in solution-phase combinatorial chemistry. [3] Used primarily in the synthesis of medicinal drugs, [4] solution-phase combinatorial chemistry allows for the creation of large libraries of structurally related compounds. [2] When purifying a solution, many approaches can be taken. In general chemical synthesis laboratories, a number of traditional techniques for purification are used as opposed to the employment of scavenger resins. Whether or not scavenger resins are used often depends on the quantity of product desired, how much time you have to produce the wanted product, and the use of the product. Some of the advantages and disadvantages to using scavenger resins as a means for purification are described later. Traditional methods of purification of these compounds becomes time consuming and does not always produce entirely pure products. [4] The ability to specialize a scavenger resin allows for significantly reduce purification times and more pure products. Furthermore, the use of scavenger resins creates a situation where the product can remain in solution and the reaction can be monitored. Conversely, many scavenger resins must be used in large amounts to purify a given product, presenting physical purification issues. [3] Furthermore, when discussing the use of scavenger resins it is important to think about the different types of solid support "beads" that will hold the selected functional group. These polymer beads can be describe most often in two ways, lightly crosslinked and highly crosslinked. The different solid supports are chosen at the preference of the chemist.

Lightly crosslinked resins

Lightly crosslinked refers to the lightly woven polymer portion of the scavenger. This type of resin becomes swollen in a particular solvent, allowing an impurity to react with a specified functional group. In many times single solvents are not sufficient to expand the resin, in which case a second solvent must be added. Examples of a secondary solvent, or co-solvent, would be Tetrahydrofuran, or THF. Typically contain 1–3% of divinylbenzene. [2] [5]

Highly crosslinked resins

Highly crosslinked resins typically swell much less than the latter. The property that allows these types of resins to work efficiently lies in their porous properties. The reacting compound can diffuse through the porous layer of the resin to converge with the scavenger's functional group. These types of resins are utilized in situations where swelling of the resins may cause a physical barrier to reaction purification. Contain much higher content of divinylbenzene. [4]

Commercial use

Organic scavenger resins have been used commercially in water filters as early as 1997. As an alternative to reverse osmosis, organic anion resins (scavenger resins) have been used to remove impurities from drinking water. These types of resins are able to remove the negatively charged organic[verification needed] molecules in water, like bicarbonates, sulfates, and nitrates. It has been estimated that 60–80% of organic impurities in water may be remove using these methods.

Advantages

Disadvantages

See also

Related Research Articles

Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number of compounds in a single process. These compound libraries can be made as mixtures, sets of individual compounds or chemical structures generated by computer software. Combinatorial chemistry can be used for the synthesis of small molecules and for peptides.

Precipitation (chemistry) Chemical process leading to the settling of an insoluble solid from a solution

In an aqueous solution, precipitation is the process of transforming a dissolved substance into an insoluble solid from a super-saturated solution. The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant.

In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively charged, have an atom that carries a partial positive charge, or have an atom that does not have an octet of electrons.

Organolithium reagent

Organolithium reagents are organometallic compounds that contain carbon–lithium bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

Ion-exchange resin Organic polymer matrix bearing ion-exchange functional groups

An ion-exchange resin or ion-exchange polymer is a resin or polymer that acts as a medium for ion exchange. It is an insoluble matrix normally in the form of small microbeads, usually white or yellowish, fabricated from an organic polymer substrate. The beads are typically porous, providing a large surface area on and inside them where the trapping of ions occurs along with the accompanying release of other ions, and thus the process is called ion exchange. There are multiple types of ion-exchange resin. Most commercial resins are made of polystyrene sulfonate.

Peptide synthesis Production of peptides

In organic chemistry, peptide synthesis is the production of peptides, compounds where multiple amino acids are linked via amide bonds, also known as peptide bonds. Peptides are chemically synthesized by the condensation reaction of the carboxyl group of one amino acid to the amino group of another. Protecting group strategies are usually necessary to prevent undesirable side reactions with the various amino acid side chains. Chemical peptide synthesis most commonly starts at the carboxyl end of the peptide (C-terminus), and proceeds toward the amino-terminus (N-terminus). Protein biosynthesis in living organisms occurs in the opposite direction.

In chemistry, solid-phase synthesis is a method in which molecules are covalently bound on a solid support material and synthesised step-by-step in a single reaction vessel utilising selective protecting group chemistry. Benefits compared with normal synthesis in a liquid state include:

Column chromatography

Column chromatography in chemistry is a chromatography method used to isolate a single chemical compound from a mixture. Chromatography is able to separate substances based on differential adsorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to be separated into fractions. The technique is widely applicable, as many different adsorbents can be used with a wide range of solvents. The technique can be used on scales from micrograms up to kilograms. The main advantage of column chromatography is the relatively low cost and disposability of the stationary phase used in the process. The latter prevents cross-contamination and stationary phase degradation due to recycling. Column chromatography can be done using gravity to move the solvent, or using compressed gas to push the solvent through the column.

Ion exchange Exchange of ions between an electrolyte solution and a solid

Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, the purification of chemicals and separation of substances.

Sulfonic acid

A sulfonic acid (or sulphonic acid) refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound (with the organic substituent replaced by hydrogen) is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

Mitsunobu reaction

The Mitsunobu reaction is an organic reaction that converts an alcohol into a variety of functional groups, such as an ester, using triphenylphosphine and an azodicarboxylate such as diethyl azodicarboxylate (DEAD) or diisopropyl azodicarboxylate (DIAD). Although DEAD and DIAD are most commonly used, there are a variety of other azodicarboxylates available which facilitate an easier workup and/or purification and in some cases, facilitate the use of more basic nucleophiles. It was discovered by Oyo Mitsunobu (1934–2003). Typical protocol is to add the phosphine and azodicarboxylate together at −10 °C, typically in THF or toluene, until a white precipitate forms. This white, cloudy suspension is the ylide. Then a solution of the nucleophile and alcohol are added together and the reaction can, and in many cases is, heated to reflux. The alcohol reacts with the phosphine to create a good leaving group then undergoes an inversion of stereochemistry in classic SN2 fashion as the nucleophile displaces it. A common side-product is produced when the azodicarboxylate displaces the leaving group instead of the desired nucleophile. This happens if the nucleophile is not acidic enough or is not nucleophilic enough due to steric or electronic constraints. A variation of this reaction utilizing a nitrogen nucleophile is known as a Fukuyama–Mitsunobu.

In organic chemistry, a carbodiimide is a functional group with the formula RN=C=NR. They are exclusively synthetic. A well known carbodiimide is dicyclohexylcarbodiimide, which is used in peptide synthesis. Dialkylcarbodiimides are stable. Some diaryl derivatives tend to convert to dimers and polymers upon standing at room temperature, though this mostly occurs with low melting point carbodiimides that are liquids at room temperature. Solid diaryl carbodiimides are more stable, but can slowly undergo hydrolysis in the presence of water over time.

Liquid–liquid extraction (LLE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e. once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration. The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. LLE is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment called as mixer settlers. This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up.

Merrifield Resin is a cross-linked polystyrene resin that carries a chloromethyl functional group. Merrifield resin is named after its inventor, Robert Bruce Merrifield, and used in solid-phase synthesis. The material is typically available as white beads. These beads are allowed to swell in suitable solvents, which then allows the reagents to substitute the chloride substituents.

Schlenk line Glass apparatus used in chemistry

The Schlenk line is a commonly used chemistry apparatus developed by Wilhelm Schlenk. It consists of a dual manifold with several ports. One manifold is connected to a source of purified inert gas, while the other is connected to a vacuum pump. The inert-gas line is vented through an oil bubbler, while solvent vapors and gaseous reaction products are prevented from contaminating the vacuum pump by a liquid-nitrogen or dry-ice/acetone cold trap. Special stopcocks or Teflon taps allow vacuum or inert gas to be selected without the need for placing the sample on a separate line.

Work-up

In chemistry, work-up refers to the series of manipulations required to isolate and purify the product(s) of a chemical reaction.

Methyltrichlorosilane Chemical compound

Methyltrichlorosilane, also known as trichloromethylsilane, is an organosilicon compound with the formula CH3SiCl3. It is a colorless liquid with a sharp odor similar to that of hydrochloric acid. As methyltrichlorosilane is a reactive compound, it is mainly used a precursor for forming various cross-linked siloxane polymers.

Air-free techniques refer to a range of manipulations in the chemistry laboratory for the handling of compounds that are air-sensitive. These techniques prevent the compounds from reacting with components of air, usually water and oxygen; less commonly carbon dioxide and nitrogen. A common theme among these techniques is the use of a fine (100–10−3 Torr) or high (10−3–10−6 Torr) vacuum to remove air, and the use of an inert gas: preferably argon, but often nitrogen.

Nitroethylene Chemical compound

Nitroethylene (also known as nitroethene) is a liquid organic compound with the formula C2H3NO2. It is the simplest nitroalkene, which are unsaturated carbon chains with at least one double bond and a NO2 functional group. Nitroethylene serves as a useful intermediate in the production of various other chemicals.

The split and pool (split-mix) synthesis is a method in combinatorial chemistry that can be used to prepare combinatorial compound libraries. It is a stepwise, highly efficient process realized in repeated cycles. The procedure makes it possible to prepare millions or even trillions of compounds as mixtures that can be used in drug research.

References

  1. Baldino, C. J. (2000). "Perspective articles on the utility and application of solution-phase combinatorial". Journal of Combinatorial Chemistry . 2 (2): 89–103. doi:10.1021/cc990064+. PMID   10809591.
  2. 1 2 3 Barth, Michael; et al. (2004). "High loading polymer reagents based on polycationic Ultraresins. Polymer-supported reductions and oxidations with increased efficiency". Tetrahedron. 60 (39): 8703–8709. doi:10.1016/j.tet.2004.05.104.
  3. 1 2 3 Carlisle, Steven J. , Marsh, Andrew, Smith, S.C. (2001). "High-loading scavenger resins for combinatorial chemistry". Tetrahedron Letters. 42 (3): 493–496. doi:10.1016/S0040-4039(00)01999-7.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 Garcia, J. Gabriel (2003). "Scavenger Resins in Solution-Phase CombiChem". Combinatorial Chemistry, Part B. Methods in Enzymology. Vol. 369. pp. 391–412. doi:10.1016/S0076-6879(03)69021-X. ISBN   9780121822729. PMID   14722965.
  5. David Alan Pears "Scavenger Resin and Processes for the Use Thereof" – U.S. Patent 6,897,262 Issue date: 24 May 2005