Dynamic combinatorial chemistry

Last updated
The terminology used in the field of Dynamic Combinatorial Chemistry (DCC) and Constitutional Dynamic Chemistry (CDC). DCC vs CDC.png
The terminology used in the field of Dynamic Combinatorial Chemistry (DCC) and Constitutional Dynamic Chemistry (CDC).

Dynamic combinatorial chemistry (DCC); also known as constitutional dynamic chemistry (CDC) is a method to the generation of new molecules formed by reversible reaction of simple building blocks under thermodynamic control. [3] [4] The library[ further explanation needed ] of these reversibly interconverting building blocks is called a dynamic combinatorial library (DCL). [5] [6] All constituents in a DCL are in equilibrium, and their distribution is determined by their thermodynamic stability within the DCL. The interconversion of these building blocks may involve covalent or non-covalent interactions. When a DCL is exposed to an external influence (such as proteins or nucleic acids), the equilibrium shifts and those components that interact with the external influence are stabilised and amplified, allowing more of the active compound to be formed.

Contents

History

An early example of dynamic combinatorial chemistry in organic synthesis. Sanders et al. employed DCC to generate steroid-derived macrocycles, capable of interconversion by transesterification. Oligosaccharide self-assembly.pdf
An early example of dynamic combinatorial chemistry in organic synthesis. Sanders et al. employed DCC to generate steroid-derived macrocycles, capable of interconversion by transesterification.

By modern definition, dynamic combinatorial chemistry is generally considered to be a method of facilitating the generation of new chemical species by the reversible linkage of simple building blocks, under thermodynamic control. [4] This principle is known to select the most thermodynamically stable product from an equilibrating mixture of a number of components, a concept commonly utilised in synthetic chemistry to direct the control of reaction selectivity. [7] Although this approach was arguably utilised in the work of Fischer [8] and Werner [9] as early as the 19th century, their respective studies of carbohydrate and coordination chemistry were restricted to rudimentary speculation, requiring the rationale of modern thermodynamics. [10] [11] It was not until supramolecular chemistry revealed early concepts of molecular recognition, complementarity and self-organisation that chemists could begin to employ strategies for the rational design and synthesis of macromolecular targets. [12] The concept of template synthesis was further developed and rationalised through the pioneering work of Busch in the 1960s, which clearly defined the role of a metal ion template in stabilising the desired ‘thermodynamic’ product, allowing for its isolation from the complex equilibrating mixture. [13] [14] Although the work of Busch helped to establish the template method as a powerful synthetic route to stable macrocyclic structures, this approach remained exclusively within the domain of inorganic chemistry until the early 1990s, when Sanders et al. first proposed the concept of dynamic combinatorial chemistry. [4] Their work combined thermodynamic templation in tandem with combinatorial chemistry, to generate an ensemble complex porphyrin and imine macrocycles using a modest selection of simple building blocks.

Sanders then developed this early manifestation of dynamic combinatorial chemistry as a strategy for organic synthesis; the first example being the thermodynamically-controlled macrolactonisation of oligocholates to assemble cyclic steroid-derived macrocycles capable of interconversion via component exchange. [15] Early work by Sanders et al. employed transesterification to generate dynamic combinatorial libraries. In retrospect, it was unfortunate that esters were selected for mediating component exchange, as transesterification processes are inherently slow and require vigorous anhydrous conditions. [4] However, their subsequent investigations identified that both the disulfide and hydrazone covalent bonds exhibit effective component exchange processes and so present a reliable means of generating dynamic combinatorial libraries capable of thermodynamic templation. This chemistry now forms the basis of much research in the developing field of dynamic covalent chemistry, and has in recent years emerged as a powerful tool for the discovery of molecular receptors.

Protein-directed

One of the key developments within the field of DCC is the use of proteins (or other biological macromolecules, such as nucleic acids) to influence the evolution and generation of components within a DCL. [16] [17] [18] [19] [20] [21] Protein-directed DCC provides a way to generate, identify and rank novel protein ligands, and therefore have huge potential in the areas of enzyme inhibition and drug discovery. [22]

Scheme illustrating the theory of protein-directed dynamic combinatorial chemistry (DCC). Protein DCC.PNG
Scheme illustrating the theory of protein-directed dynamic combinatorial chemistry (DCC).

Reversible covalent reactions

Types of reversible covalent reactions that have been applied in protein-directed dynamic combinatorial chemistry (DCC). Types of DCC reactions.PNG
Types of reversible covalent reactions that have been applied in protein-directed dynamic combinatorial chemistry (DCC).

The development of protein-directed DCC has not been straightforward because the reversible reactions employed must occur in aqueous solution at biological pH and temperature, and the components of the DCL must be compatible with proteins. [16] [22]

Several reversible reactions have been proposed and/or applied in protein-directed DCC. These included boronate ester formation, [23] [24] [25] diselenides-disulfides exchange, [26] disulphide formation, [27] [28] [29] hemithiolacetal formation, [30] [31] hydrazone formation, [32] [33] imine formation [34] [35] [36] and thiol-enone exchange. [37]

Pre-equilibrated DCL

For reversible reactions that do not occur in aqueous buffers, the pre-equilibrated DCC approach can be used. The DCL was initially generated (or pre-equilibrated) in organic solvent, and then diluted into aqueous buffer containing the protein target for selection. Organic based reversible reactions, including Diels-Alder [38] and alkene cross metathesis reactions, [39] have been proposed or applied to protein-directed DCC using this method.

Reversible non-covalent reactions

Reversible non-covalent reactions, such as metal-ligand coordination, [40] [41] has also been applied in protein-directed DCC. This strategy is useful for the investigation of the optimal ligand stereochemistry to the binding site of the target protein. [42]

Enzyme-catalysed reversible reactions

Enzyme-catalysed reversible reactions, such as protease-catalysed amide bond formation/hydrolysis reactions [43] and the aldolase-catalysed aldol reactions, [44] [45] have also been applied to protein-directed DCC.

Analytical methods

Protein-directed DCC system must be amenable to efficient screening. [16] [22] Several analytical techniques have been applied to the analysis of protein-directed DCL. These include HPLC, [27] [31] [32] [35] mass spectrometry, [24] [28] [29] [33] NMR spectroscopy, [23] [25] [30] and X-ray crystallography. [46]

Multi-protein approach

Although most applications of protein-directed DCC to date involved the use of single protein in the DCL, it is possible to identify protein ligands by using multiple proteins simultaneously, as long as a suitable analytical technique is available to detect the protein species that interact with the DCL components. [47] This approach may be used to identify specific inhibitors or broad-spectrum enzyme inhibitors.

Other applications

DCC is useful in identifying molecules with unusual binding properties, and provides synthetic routes to complex molecules that aren't easily accessible by other means. These include smart materials, foldamers, self-assembling molecules with interlocking architectures and new soft materials. [4] The application of DCC to detect volatile bioactive compounds, i.e. the amplification and sensing of scent, was proposed in a concept paper. [48] Recently, DCC was also used to study the abiotic origins of life. [49]

See also

Related Research Articles

<span class="mw-page-title-main">Rotaxane</span> Interlocked molecular structure resembling a dumbbell

A rotaxane is a mechanically interlocked molecular architecture consisting of a dumbbell-shaped molecule which is threaded through a macrocycle. The two components of a rotaxane are kinetically trapped since the ends of the dumbbell are larger than the internal diameter of the ring and prevent dissociation (unthreading) of the components since this would require significant distortion of the covalent bonds.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2. Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.

<span class="mw-page-title-main">Binding site</span> Molecule-specific coordinate bonding area in biological systems

In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may include other proteins, enzyme substrates, second messengers, hormones, or allosteric modulators. The binding event is often, but not always, accompanied by a conformational change that alters the protein's function. Binding to protein binding sites is most often reversible, but can also be covalent reversible or irreversible.

Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects.

<span class="mw-page-title-main">Catenane</span> Molecule composed of two or more intertwined rings

In macromolecular chemistry, a catenane is a mechanically interlocked molecular architecture consisting of two or more interlocked macrocycles, i.e. a molecule containing two or more intertwined rings. The interlocked rings cannot be separated without breaking the covalent bonds of the macrocycles. They are conceptually related to other mechanically interlocked molecular architectures, such as rotaxanes, molecular knots or molecular Borromean rings. Recently the terminology "mechanical bond" has been coined that describes the connection between the macrocycles of a catenane. Catenanes have been synthesised in two different ways: statistical synthesis and template-directed synthesis.

Reductive elimination is an elementary step in organometallic chemistry in which the oxidation state of the metal center decreases while forming a new covalent bond between two ligands. It is the microscopic reverse of oxidative addition, and is often the product-forming step in many catalytic processes. Since oxidative addition and reductive elimination are reverse reactions, the same mechanisms apply for both processes, and the product equilibrium depends on the thermodynamics of both directions.

In organic chemistry, the Ugi reaction is a multi-component reaction involving a ketone or aldehyde, an amine, an isocyanide and a carboxylic acid to form a bis-amide. The reaction is named after Ivar Karl Ugi, who first reported this reaction in 1959.

In chemical synthesis, click chemistry is a class of simple, atom-economy reactions commonly used for joining two molecular entities of choice. Click chemistry is not a single specific reaction, but describes a way of generating products that follow examples in nature, which also generates substances by joining small modular units. In many applications, click reactions join a biomolecule and a reporter molecule. Click chemistry is not limited to biological conditions: the concept of a "click" reaction has been used in chemoproteomic, pharmacological, biomimetic and molecular machinery applications. However, they have been made notably useful in the detection, localization and qualification of biomolecules.

The azide-alkyne Huisgen cycloaddition is a 1,3-dipolar cycloaddition between an azide and a terminal or internal alkyne to give a 1,2,3-triazole. Rolf Huisgen was the first to understand the scope of this organic reaction. American chemist Karl Barry Sharpless has referred to this cycloaddition as "the cream of the crop" of click chemistry and "the premier example of a click reaction".

Dynamic covalent chemistry (DCvC) is a synthetic strategy employed by chemists to make complex molecular and supramolecular assemblies from discrete molecular building blocks. DCvC has allowed access to complex assemblies such as covalent organic frameworks, molecular knots, polymers, and novel macrocycles. Not to be confused with dynamic combinatorial chemistry, DCvC concerns only covalent bonding interactions. As such, it only encompasses a subset of supramolecular chemistries.

<span class="mw-page-title-main">Foldamer</span> Chain molecule which folds in predictable ways while in solution

In chemistry, a foldamer is a discrete chain molecule (oligomer) that folds into a conformationally ordered state in solution. They are artificial molecules that mimic the ability of proteins, nucleic acids, and polysaccharides to fold into well-defined conformations, such as α-helices and β-sheets. The structure of a foldamer is stabilized by noncovalent interactions between nonadjacent monomers. Foldamers are studied with the main goal of designing large molecules with predictable structures. The study of foldamers is related to the themes of molecular self-assembly, molecular recognition, and host–guest chemistry.

In chemistry, mechanically interlocked molecular architectures (MIMAs) are molecules that are connected as a consequence of their topology. This connection of molecules is analogous to keys on a keychain loop. The keys are not directly connected to the keychain loop but they cannot be separated without breaking the loop. On the molecular level, the interlocked molecules cannot be separated without the breaking of the covalent bonds that comprise the conjoined molecules; this is referred to as a mechanical bond. Examples of mechanically interlocked molecular architectures include catenanes, rotaxanes, molecular knots, and molecular Borromean rings. Work in this area was recognized with the 2016 Nobel Prize in Chemistry to Bernard L. Feringa, Jean-Pierre Sauvage, and J. Fraser Stoddart.

The Meerwein–Ponndorf–Verley (MPV) reduction in organic chemistry is the reduction of ketones and aldehydes to their corresponding alcohols utilizing aluminium alkoxide catalysis in the presence of a sacrificial alcohol. The advantages of the MPV reduction lie in its high chemoselectivity, and its use of a cheap environmentally friendly metal catalyst. MPV reductions have been described as "obsolete" owing to the development of sodium borohydride and related reagents.

Molecular binding is an attractive interaction between two molecules that results in a stable association in which the molecules are in close proximity to each other. It is formed when atoms or molecules bind together by sharing of electrons. It often, but not always, involves some chemical bonding.

Smart ligands are affinity ligands selected with pre-defined equilibrium, kinetic and thermodynamic parameters of biomolecular interaction.

Jeremy Keith Morris Sanders is a British chemist and Emeritus Professor in the Department of Chemistry at the University of Cambridge. He is also Editor-in-Chief of Royal Society Open Science. He is known for his contributions to many fields including NMR spectroscopy and supramolecular chemistry. He served as the Pro-Vice-Chancellor for Institutional Affairs at the University of Cambridge, 2011–2015.

<span class="mw-page-title-main">Two-dimensional polymer</span>

A two-dimensional polymer (2DP) is a sheet-like monomolecular macromolecule consisting of laterally connected repeat units with end groups along all edges. This recent definition of 2DP is based on Hermann Staudinger's polymer concept from the 1920s. According to this, covalent long chain molecules ("Makromoleküle") do exist and are composed of a sequence of linearly connected repeat units and end groups at both termini.

<span class="mw-page-title-main">Supramolecular catalysis</span> Field of chemistry

Supramolecular catalysis is not a well-defined field but it generally refers to an application of supramolecular chemistry, especially molecular recognition and guest binding, toward catalysis. This field was originally inspired by enzymatic system which, unlike classical organic chemistry reactions, utilizes non-covalent interactions such as hydrogen bonding, cation-pi interaction, and hydrophobic forces to dramatically accelerate rate of reaction and/or allow highly selective reactions to occur. Because enzymes are structurally complex and difficult to modify, supramolecular catalysts offer a simpler model for studying factors involved in catalytic efficiency of the enzyme. Another goal that motivates this field is the development of efficient and practical catalysts that may or may not have an enzyme equivalent in nature.

<span class="mw-page-title-main">Targeted covalent inhibitors</span>

Targeted covalent inhibitors (TCIs) or Targeted covalent drugs are rationally designed inhibitors that bind and then bond to their target proteins. These inhibitors possess a bond-forming functional group of low chemical reactivity that, following binding to the target protein, is positioned to react rapidly with a proximate nucleophilic residue at the target site to form a bond.

Systems chemistry is the science of studying networks of interacting molecules, to create new functions from a set of molecules with different hierarchical levels and emergent properties.

References

  1. Lehn, Jean-Marie (2007). "From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry". Chem. Soc. Rev. 36 (2): 151–160. doi:10.1039/B616752G. ISSN   0306-0012. PMID   17264919.
  2. Lehn, Jean-Marie (2011). "Constitutional dynamic chemistry: Bridge from supramolecular chemistry to adaptive chemistry". In Barboiu, Mihail (ed.). Constitutional Dynamic Chemistry. Topics in Current Chemistry. Vol. 322. Springer Berlin Heidelberg. pp. 1–32. doi:10.1007/128_2011_256. ISBN   978-3-642-28343-7. PMID   22169958.
  3. Schaufelberger, F.; Timmer, B. J. J.; Ramström, O. Principles of Dynamic Covalent Chemistry. In Dynamic Covalent Chemistry: Principles, Reactions, and Applications; Zhang, W.; Jin, Y., Eds.; John Wiley & Sons: Chichester, 2018; Chapter 1, pp 1–30.
  4. 1 2 3 4 5 Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto, S. (Sep 2006). "Dynamic combinatorial chemistry". Chem. Rev. 106 (9): 3652–3711. doi:10.1021/cr020452p. PMID   16967917.
  5. Komáromy, D.; Nowak, P.; Otto, S. Dynamic Combinatorial Libraries. In Dynamic Covalent Chemistry: Principles, Reactions, and Applications; Zhang, W.; Jin, Y., Eds.; John Wiley & Sons: Chichester, 2018; Chapter 2, pp 31–119.
  6. Lehn, J.-M.; Ramström, O. Generation and screening of a dynamic combinatorial library. PCT. Int. Appl. WO 20010164605, 2001.
  7. Rowan, Stuart J.; Cantrill, Stuart J.; Cousins, Graham R. L.; Sanders, Jeremy K. M.; Stoddart, J. Fraser (2002-03-15). "Dynamic Covalent Chemistry". Angewandte Chemie International Edition. 41 (6): 898–952. doi:10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E. ISSN   1521-3773. PMID   12491278.
  8. Kunz, Horst (2002-12-02). "Emil Fischer—Unequalled Classicist, Master of Organic Chemistry Research, and Inspired Trailblazer of Biological Chemistry". Angewandte Chemie International Edition. 41 (23): 4439–4451. doi:10.1002/1521-3773(20021202)41:23<4439::AID-ANIE4439>3.0.CO;2-6. ISSN   1521-3773. PMID   12458504.
  9. Constable, Edwin C.; Housecroft, Catherine E. (2013-01-28). "Coordination chemistry: the scientific legacy of Alfred Werner". Chem. Soc. Rev. 42 (4): 1429–1439. doi:10.1039/c2cs35428d. PMID   23223794.
  10. Anderson, Sally; Anderson, Harry L.; Sanders, Jeremy K. M. (1993-09-01). "Expanding roles for templates in synthesis". Accounts of Chemical Research. 26 (9): 469–475. doi:10.1021/ar00033a003. ISSN   0001-4842.
  11. Hoss, Ralf; Vögtle, Fritz (1994-03-03). "Template Syntheses". Angewandte Chemie International Edition in English. 33 (4): 375–384. doi:10.1002/anie.199403751. ISSN   1521-3773.
  12. Lehn, Jean-Marie (2007-01-30). "From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry". Chem. Soc. Rev. 36 (2): 151–160. doi:10.1039/b616752g. PMID   17264919.
  13. Thompson, Major C.; Busch, Daryle H. (1964-01-01). "Reactions of Coordinated Ligands. VI. Metal Ion Control in the Synthesis of Planar Nickel(II) Complexes of α-Diketo-bis-mercaptoimines". Journal of the American Chemical Society. 86 (2): 213–217. doi:10.1021/ja01056a021. ISSN   0002-7863.
  14. Thompson, Major C.; Busch, Daryle H. (1962-05-01). "Reactions of Coördinated Ligands. II. Nickel(II) Complexes of Some Novel Tetradentate Ligands". Journal of the American Chemical Society. 84 (9): 1762–1763. doi:10.1021/ja00868a073. ISSN   0002-7863.
  15. Brady, Paul A.; Bonar-Law, Richard P.; Rowan, Stuart J.; Suckling, Christopher J.; Sanders, Jeremy K. M. (January 1996). "?Living? macrolactonisation: thermodynamically-controlled cyclisation and interconversion of oligocholates". Chemical Communications (3): 319–320. doi:10.1039/cc9960000319.
  16. 1 2 3 Greaney, M. F.; Bhat, V. T. Protein-directed dynamic combinatorial chemistry. In Dynamic combinatorial chemistry: in drug discovery, bioinorganic chemistry, and materials sciences; Miller, B. L., Ed.; John Wiley & Sons: New Jersey, 2010; Chapter 2, pp 43–82.
  17. Huang, R.; Leung, I. K. H. (Jul 2016). "Protein-directed dynamic combinatorial chemistry: a guide to protein ligand and inhibitor discovery". Molecules. 21 (7): 910. doi: 10.3390/molecules21070910 . PMC   6273345 . PMID   27438816.
  18. Frei, P.; Hevey, R.; Ernst, B. (Sep 2018). "Dynamic Combinatorial Chemistry: A New Methodology Comes of Age". Chem. Eur. J. 25 (1): 60–73. doi:10.1002/chem.201803365. PMID   30204930. S2CID   52188992.
  19. Jaegle, M.; Wong, E. L.; Tauber, C.; Nawrotzky, E.; Arkona, C.; Rademann, J. (Jan 2017). "Protein-templated fragment ligations - from molecular recognition to drug discovery". Angew. Chem. Int. Ed. 56 (26): 7358–7378. doi:10.1002/anie.201610372. PMC   7159684 . PMID   28117936.
  20. Mondal, M.; Hirsch, A. K. (Apr 2015). "Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets". Chem. Soc. Rev. 44 (8): 2455–2488. doi: 10.1039/c4cs00493k . PMID   25706945.
  21. Herrmann, A. (Mar 2014). "Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures". Chem. Soc. Rev. 43 (6): 1899–1933. doi:10.1039/c3cs60336a. PMID   24296754.
  22. 1 2 3 Hochgürtel, M.; Lehn, J.-M. Dynamic combinatorial diversity in drug discovery. In Fragment-based approaches in drug discovery; Jahnke, W., Erlanson, D. A., Ed.; Wiley-VCH: Weinheim, 2006; Chapter 16, pp 341–364.
  23. 1 2 3 Leung, I. K. H.; Demetriades, M.; Hardy, A. P.; Lejeune, C.; Smart, T. J.; Szöllössi, A.; Kawamura, A.; Schofield, C. J.; Claridge, T. D. W. (Jan 2013). "NMR reporter ligand screening for inhibitors of 2OG oxygenases". J. Med. Chem. 56 (2): 547–555. doi:10.1021/jm301583m. PMC   4673903 . PMID   23234607.
  24. 1 2 Demetriades, M.; Leung, I. K. H.; Chowdhury, R.; Chan, M. C.; Yeoh, K. K.; Tian, Y.-M.; Claridge, T. D. W.; Ratcliffe, P. J.; Woon, E. C. Y.; Schofield, C. J. (Jul 2012). "Dynamic combinatorial chemistry employing boronic acids/boronate esters leads to potent oxygenase inhibitors". Angew. Chem. Int. Ed. 51 (27): 6672–6675. doi:10.1002/anie.201202000. PMID   22639232.
  25. 1 2 Leung, I. K. H.; Brown Jr, T.; Schofield, C. J.; Claridge, T. D. W. (May 2011). "An approach to enzyme inhibition employing reversible boronate ester formation". Med. Chem. Commun. 2 (5): 390–395. doi:10.1039/C1MD00011J.
  26. Rasmussen, B.; Sørensen, A.; Gotfredsen, H.; Pittelkow, M. (Feb 2014). "Dynamic combinatorial chemistry with diselenides and disulfides in water". Chem. Commun. 50 (28): 3716–3718. doi:10.1039/C4CC00523F. PMID   24577496. S2CID   8774608.
  27. 1 2 Ramström, O.; Lehn, J.-M. (Jul 2000). "In situ generation and screening of a dynamic combinatorial carbohydrate library against concanavalin A". ChemBioChem. 1 (1): 41–48. doi:10.1002/1439-7633(20000703)1:1<41::AID-CBIC41>3.0.CO;2-L. PMID   11828397. S2CID   24024198.
  28. 1 2 Liénard, B. M. R.; Selevsek, N.; Oldham, N. J.; Schofield, C. J. (Feb 2007). "Combined mass spectrometry and dynamic chemistry approach to identify metalloenzyme inhibitors". ChemMedChem. 2 (2): 175–179. doi:10.1002/cmdc.200600250. PMID   17206734. S2CID   36592352.
  29. 1 2 Liénard, B. M. R.; Hüting, R.; Lassaux, P.; Galleni, M.; Frére, J.-M.; Schofield, C. J. (Feb 2008). "Dynamic combinatorial mass spectrometry leads to metallo-β-lactamase inhibitors". J. Med. Chem. 51 (3): 684–688. doi:10.1021/jm070866g. PMID   18205296.
  30. 1 2 Caraballo, R.; Dong, H.; Ribeiro, J. P.; Jiménez-Barbero, J.; Ramström, O. (Jan 2010). "Direct STD NMR identification of β-galactosidase inhibitors from a virtual dynamic hemithioacetal system". Angew. Chem. Int. Ed. 49 (3): 589–593. doi:10.1002/anie.200903920. PMID   20013972.
  31. 1 2 Clipson, A. J.; Bhat, V. T.; McNae, I.; Caniard, A. M.; Campopiano, D. J.; Greaney, M. F. (Aug 2012). "Bivalent enzyme inhibitors discovered using dynamic covalent chemistry" (PDF). Chem. Eur. J. 18 (34): 10562–10570. doi:10.1002/chem.201201507. hdl: 20.500.11820/a3e3e607-6152-44b2-b74c-c9c6bd90946e . PMID   22782854. S2CID   28796078.
  32. 1 2 Hochgürtel, M.; Niesinger, R.; Kroth, H.; Piecha, D.; Hofmann, M. W.; Krause, S.; Schaaf, O.; Nicolau, C.; Eliseev, A. V. (Jan 2003). "Ketones as building blocks for dynamic combinatorial libraries: highly active neuraminidase inhibitors generated via selective pressure of the biological target". J. Med. Chem. 46 (3): 356–358. doi:10.1021/jm025589m. PMID   12540234.
  33. 1 2 Sindelar, M.; Lutz, T. A.; Petrera, M.; Wanner, K. T. (Feb 2013). "Focused pseudostatic hydrazone libraries screened by mass spectrometry binding assay: optimizing affinities toward γ-aminobutyric acid transporter 1". J. Med. Chem. 56 (3): 1323–1340. doi:10.1021/jm301800j. PMID   23336362.
  34. Yang, Z.; Fang, Z.; He, W.; Wang, Z.; Gang, H.; Tian, Q.; Guo, K. (Apr 2016). "Identification of inhibitors for vascular endothelial growth factor receptor by using dynamic combinatorial chemistry". Bioorg. Med. Chem. Lett. 26 (7): 1671–1674. doi:10.1016/j.bmcl.2016.02.063. PMID   26920800.
  35. 1 2 Zameo, S.; Vauzeilles, B.; Beau, J.-M. (Dec 2006). "Direct composition analysis of a dynamic library of imines in an aqueous medium". Eur. J. Org. Chem. 2006 (24): 5441–5444. doi:10.1002/ejoc.200600859.
  36. Herrmann, A. (Aug 2009). "Dynamic mixtures and combinatorial libraries: imines as probes for molecular evolution at the interface between chemistry and biology". Org. Biomol. Chem. 7 (16): 3195–3204. doi:10.1039/B908098H. PMID   19641772.
  37. Shi, B.; Stevenson, R.; Campopiano, D. J.; Greaney, M. F. (Jul 2006). "Discovery of glutathione S-transferase inhibitors using dynamic combinatorial chemistry". J. Am. Chem. Soc. 128 (26): 8459–8467. doi:10.1021/ja058049y. PMID   16802811.
  38. Boul, P. J.; Reutenauer, P.; Lehn, J.-M. (Jan 2005). "Reversible Diels-Alder reactions for the generation of dynamic combinatorial libraries". Org. Lett. 7 (1): 15–18. doi:10.1021/ol048065k. PMID   15624966.
  39. Poulsen, S.-A.; Bornaghi, L. F. (May 2006). "Fragment-based drug discovery of carbonic anhydrase II inhibitors by dynamic combinatorial chemistry utilizing alkene cross metathesis". Bioorg. Med. Chem. 14 (10): 3275–3284. doi:10.1016/j.bmc.2005.12.054. hdl: 10072/14469 . PMID   16431113.
  40. Sakai, S.; Shigemasa, Y.; Sasaki, T. (Nov 1997). "A self-adjusting carbohydrate ligand for GalNAc specific lectins". Tetrahedron Lett. 38 (47): 8145–8148. doi:10.1016/S0040-4039(97)10187-3.
  41. Sakai, S.; Shigemasa, Y.; Sasaki, T. (1999). "Iron(II)-assisted assembly of trivalent GalNAc clusters and their interactions with GalNAc-specific lectins". Bull. Chem. Soc. Jpn. 72 (6): 1313–1319. doi:10.1246/bcsj.72.1313.
  42. Kilpin, K. J.; Dyson, P. J. (Feb 2013). "Enzyme inhibition by metal complexes: concepts, strategies and applications". Chem. Sci. 4 (4): 1410–1419. doi: 10.1039/C3SC22349C .
  43. Swann, P. G.; Casanova, R. A.; Desai, A.; Frauenhoff, M. M.; Urbancic, M.; Slomczynska, U.; Hopfinger, A. J.; Le Breton, G. C.; Venton, D. L. (1996). "Nonspecific protease-catalyzed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap". Biopolymers. 40 (6): 617–625. doi:10.1002/(sici)1097-0282(1996)40:6<617::aid-bip3>3.0.co;2-z. PMID   9140201. S2CID   24603197.
  44. Lins, R. J.; Flitsch, S. L.; Turner, N. J.; Irving, E.; Brown, S. A. (Sep 2002). "Enzymatic generation and in situ screening of a dynamic combinatorial library of sialic acid analogues". Angew. Chem. Int. Ed. 41 (18): 3405–3407. doi:10.1002/1521-3773(20020916)41:18<3405::AID-ANIE3405>3.0.CO;2-P. PMID   12298046.
  45. Lins, R. J.; Flitsch, S. L.; Turner, N. J.; Irving, E.; Brown, S. A. (Jan 2004). "Generation of a dynamic combinatorial library using sialic acid aldolase and in situ screening against wheat germ agglutinin". Tetrahedron. 60 (3): 771–780. doi:10.1016/j.tet.2003.11.062.
  46. Valade, A.; Urban, D.; Beau, J.-M. (Jan–Feb 2007). "Two galatosyltransferases' selection of different binders from the same uridine-based dynamic combinatorial library". J. Comb. Chem. 9 (1): 1–4. doi:10.1021/cc060033w. PMID   17206823.
  47. Das, M.; Tianming, Y.; Jinghua, D.; Prasetya, F.; Yiming, X.; Wong, K.; Cheong, A.; Woon, E. C. Y. (Jun 2018). "Multi-Protein Dynamic Combinatorial Chemistry: A Novel Strategy that Leads to Simultaneous Discovery of Subfamily-Selective Inhibitors for Nucleic Acid Demethylases FTO and ALKBH3". Chem. Asian J. 13 (19): 2854–2867. doi:10.1002/asia.201800729. PMID   29917331. S2CID   49291870.
  48. Herrmann, A. (Jul 2012). "Dynamic Mixtures: Challenges and Opportunities for the Amplification and Sensing of Scents". Chem. Eur. J. 18 (28): 8568–8577. doi:10.1002/chem.201200668. PMID   22588709.
  49. Chandru, Kuhan; Guttenberg, Nicholas; Giri, Chaitanya; Hongo, Yayoi; Butch, Christopher; Mamajanov, Irena; Cleaves, H. James (31 May 2018). "Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries". Communications Chemistry. 1 (1). doi: 10.1038/s42004-018-0031-1 . ISSN   2399-3669.