Scotobiology

Last updated

Scotobiology is the study of biology as directly and specifically affected by darkness, as opposed to photobiology, which describes the biological effects of light.

Contents

Overview

The science of scotobiology gathers together under a single descriptive heading a wide range of approaches to the study of the biology of darkness. This includes work on the effects of darkness on the behavior and metabolism of animals, plants, and microbes. Some of this work has been going on for over a century, and lays the foundation for understanding the importance of dark night skies, not only for humans but for all biological species.

The great majority of biological systems have evolved in a world of alternating day and night and have become irrevocably adapted to and dependent on the daily and seasonally changing patterns of light and darkness. Light is essential for many biological activities such as sight and photosynthesis. These are the focus of the science of photobiology. But the presence of uninterrupted periods of darkness, as well as their alternation with light, is just as important to biological behaviour. Scotobiology studies the positive responses of biological systems to the presence of darkness, and not merely the negative effects caused by the absence of light.

Effects of darkness

Many of the biological and behavioural activities of plants, animals (including birds and amphibians), insects, and microorganisms are either adversely affected by light pollution at night or can only function effectively either during or as the consequence of nightly darkness. Such activities include foraging, breeding and social behavior in higher animals, amphibians, and insects, which are all affected in various ways if light pollution occurs in their environment. [1] These are not merely photobiological phenomena; light pollution acts by interrupting critical dark-requiring processes.

But perhaps the most important scotobiological phenomena relate to the regular periodic alternation of light and darkness. These include breeding behavior in a range of animals, the control of flowering and the induction of winter dormancy in many plants, and the operational control of the human immune system. In many of these biological processes the critical point is the length of the dark period rather than that of the light. For example, "short-day" and "long-day" plants are, in fact, "long-night" and "short-night" respectively. That is to say, plants do not measure the length of the light period, but of the dark period. [2] One consequence of artificial light pollution [3] is that even brief periods of relatively bright light during the night may prevent plants or animals (including humans) from measuring the length of the dark period, and therefore from behaving in a normal or required manner. This is a critical aspect of scotobiology, and one of the major areas in the study of the responses of biological systems to darkness.

In discussing scotobiology, it is important to remember that darkness (the absence of light) is seldom absolute. An important aspect of any scotobiological phenomenon is the level and quality (wavelength) of light that is below the threshold of detection for that phenomenon and in any specific organism. This important variable in scotobiological studies is not always properly noted or examined. There are substantial levels of natural light pollution at night, of which moonlight is usually the strongest. For example, plants that rely on night length to program their behaviour have the capacity to ignore full moonlight during an otherwise dark night. If this ability had not evolved, plants would not be able to respond to changing night-length for such behavioural programs as the initiation of flowering and the onset of dormancy. On the other hand, some animal behavioural patterns are strongly responsive to moonlight. It is thus most important in any scotobiological study to determine the threshold level of light that may be required to interfere with or negate the normal pattern of dark-night activity.

Etymology

In 2003, at a symposium on the Ecology of the Night held in Muskoka, Canada, discussion centered around the many effects of night-time light pollution on the biology of a wide range of organisms, but it went far beyond this in describing darkness as a biological imperative for the functioning of biological systems. [1] Presentations focused on the absolute requirement of darkness for many aspects of normal behaviour and metabolism of many organisms and for the normal progression of their life cycles. Because there was no suitable term to describe the Symposium's main focus, the term scotobiology was introduced. The word is derived from the Greek scotos, σκότος, "dark," and relates to photobiology, which describes the biological effects of light (φῶς, phos; root: φωτ-, phot-). The term scotobiology appears not to have been used previously, although related terms such as skototropism [4] and scotophyle [5] have appeared in the literature.

See also

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the study of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history. Ecology is a branch of biology, and it is not synonymous with environmentalism.

<span class="mw-page-title-main">Light pollution</span> Excess artificial light in an environment

Light pollution is the presence of unwanted, inappropriate, or excessive artificial lighting. In a descriptive sense, the term light pollution refers to the effects of any poorly implemented lighting, during the day or night. Light pollution can be understood not only as a phenomenon resulting from a specific source or kind of pollution, but also as a contributor to the wider, collective impact of various sources of pollution.

<span class="mw-page-title-main">Chronobiology</span> Field of biology

Chronobiology is a field of biology that examines timing processes, including periodic (cyclic) phenomena in living organisms, such as their adaptation to solar- and lunar-related rhythms. These cycles are known as biological rhythms. Chronobiology comes from the ancient Greek χρόνος, and biology, which pertains to the study, or science, of life. The related terms chronomics and chronome have been used in some cases to describe either the molecular mechanisms involved in chronobiological phenomena or the more quantitative aspects of chronobiology, particularly where comparison of cycles between organisms is required.

<span class="mw-page-title-main">Nocturnality</span> Behavior characterized by activity during the night and sleeping during the day

Nocturnality is a behavior in some non-human animals characterized by being active during the night and sleeping during the day. The common adjective is "nocturnal", versus diurnal meaning the opposite.

<span class="mw-page-title-main">Environmental science</span> The integrated, quantitative, and interdisciplinary approach to the study of environmental systems.

Environmental science is an interdisciplinary academic field that integrates physics, biology, and geography to the study of the environment, and the solution of environmental problems. Environmental science emerged from the fields of natural history and medicine during the Enlightenment. Today it provides an integrated, quantitative, and interdisciplinary approach to the study of environmental systems.

<span class="mw-page-title-main">Biological interaction</span> Effect that organisms have on other organisms

In ecology, a biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species, or of different species. These effects may be short-term, or long-term, both often strongly influence the adaptation and evolution of the species involved. Biological interactions range from mutualism, beneficial to both partners, to competition, harmful to both partners. Interactions can be direct when physical contact is established or indirect, through intermediaries such as shared resources, territories, ecological services, metabolic waste, toxins or growth inhibitors. This type of relationship can be shown by net effect based on individual effects on both organisms arising out of relationship.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">Crepuscular animal</span> Animal behavior primarily characterized by activity during the twilight

In zoology, a crepuscular animal is one that is active primarily during the twilight period, being matutinal, vespertine/vespertinal, or both. This is distinguished from diurnal and nocturnal behavior, where an animal is active during the hours of daylight and of darkness, respectively. Some crepuscular animals may also be active by moonlight or during an overcast day. Matutinal animals are active only before sunrise, and vespertine only after sunset.

<span class="mw-page-title-main">Skyglow</span> Diffuse luminance of the night sky

Skyglow is the diffuse luminance of the night sky, apart from discrete light sources such as the Moon and visible individual stars. It is a commonly noticed aspect of light pollution. While usually referring to luminance arising from artificial lighting, skyglow may also involve any scattered light seen at night, including natural ones like starlight, zodiacal light, and airglow.

The dark-sky movement is a campaign to reduce light pollution. The advantages of reducing light pollution include an increased number of stars visible at night, reducing the effects of electric lighting on the environment, improving the well-being, health and safety of both people and wildlife, and cutting down on energy usage. Earth Hour and National Dark-Sky Week are two examples of such efforts.

<span class="mw-page-title-main">Charles Sutherland Elton</span> English zoologist and ecologist, 1900–1991

Charles Sutherland Elton was an English zoologist and animal ecologist. He is associated with the development of population and community ecology, including studies of invasive organisms.

<span class="mw-page-title-main">Bioindicator</span> Species that reveals the status of an environment

A bioindicator is any species or group of species whose function, population, or status can reveal the qualitative status of the environment. The most common indicator species are animals. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot.

Photoperiodism is the physiological reaction of organisms to the length of night or a dark period. It occurs in plants and animals. Plant photoperiodism can also be defined as the developmental responses of plants to the relative lengths of light and dark periods. They are classified under three groups according to the photoperiods: short-day plants, long-day plants, and day-neutral plants.

<span class="mw-page-title-main">Aquatic ecosystem</span> Ecosystem in a body of water

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

<span class="mw-page-title-main">Diurnality</span> Behavior characterized by activity during the day and sleeping during the night

Diurnality is a form of plant and animal behavior characterized by activity during daytime, with a period of sleeping or other inactivity at night. The common adjective used for daytime activity is "diurnal". The timing of activity by an animal depends on a variety of environmental factors such as the temperature, the ability to gather food by sight, the risk of predation, and the time of year. Diurnality is a cycle of activity within a 24-hour period; cyclic activities called circadian rhythms are endogenous cycles not dependent on external cues or environmental factors except for a zeitgeber. Animals active during twilight are crepuscular, those active during the night are nocturnal and animals active at sporadic times during both night and day are cathemeral.

Sensory ecology is a relatively new field focusing on the information organisms obtain about their environment. It includes questions of what information is obtained, how it is obtained, and why the information is useful to the organism.

Island ecology is the study of island organisms and their interactions with each other and the environment. Islands account for nearly 1/6 of earth’s total land area, yet the ecology of island ecosystems is vastly different from that of mainland communities. Their isolation and high availability of empty niches lead to increased speciation. As a result, island ecosystems comprise 30% of the world’s biodiversity hotspots, 50% of marine tropical diversity, and some of the most unusual and rare species. Many species still remain unknown.

<span class="mw-page-title-main">Soundscape ecology</span> Study of the effect of environmental sound on organisms

Soundscape ecology is the study of the acoustic relationships between living organisms, human and other, and their environment, whether the organisms are marine or terrestrial. First appearing in the Handbook for Acoustic Ecology edited by Barry Truax, in 1978, the term has occasionally been used, sometimes interchangeably, with the term acoustic ecology. Soundscape ecologists also study the relationships between the three basic sources of sound that comprise the soundscape: those generated by organisms are referred to as the biophony; those from non-biological natural categories are classified as the geophony, and those produced by humans, the anthropophony.

<span class="mw-page-title-main">Ecological light pollution</span>

Ecological light pollution is the effect of artificial light on individual organisms and on the structure of ecosystems as a whole.

Pollutant-induced abnormal behaviour refers to the abnormal behaviour induced by pollutants. Chemicals released into the natural environment by humans impact the behaviour of a wide variety of animals. The main culprits are endocrine-disrupting chemicals (EDCs), which mimic, block, or interfere with animal hormones. A new research field, integrative behavioural ecotoxicology, is emerging. However, chemical pollutants are not the only anthropogenic offenders. Noise and light pollution also induce abnormal behaviour.

References

  1. 1 2 The Ecology of the Night. An International Symposium: Darkness as a Biological Imperative. Muskoka, Canada, 22–24 September 2003; Chair, Peter L.E. Goering. Proceedings are available online at www.muskokaheritage.org/ecology-night/
  2. Bidwell, R.G.S. 1979. Plant Physiology, MacMillan Publishing Co., Inc., New York.
  3. "Ecological Consequences of Artificial Night Lighting", edited by Catherine Rich and Travis Longcore, Published by Island Press, 2006, 458pp, ISBN   1-55963-129-5.
  4. Strong, D.R. and Ray, T.S. (1975). Science 190, #4216, pp 804–806.
  5. Work of E. Bunning reported in (4), also of K.C. Hamner, reviewed in Evans, L.T. (1963). Environmental Control of Plant Growth, Academic Press, New York.