Ship ballast

Last updated

Ballast is weight placed low in ships to lower their centre of gravity, which increases stability (more technically, to provide a righting moment to resist any heeling moment on the hull). Insufficiently ballasted boats tend to tip or heel excessively in high winds. Too much heel may result in the vessel filling with water and/or capsizing. If a sailing vessel needs to voyage without cargo, then ballast of little or no value will be loaded to keep the vessel upright. Some or all of this ballast will then be discarded when cargo is loaded.

Contents

If a cargo vessel (such as a tanker, bulk carrier or container ship) wishes to travel empty or partially empty to collect a cargo, it must travel "in ballast". This keeps the vessel in trim and keeps the propeller and rudder submerged. Typically, being "in ballast" will mean flooding ballast tanks with sea water. Serious problems may arise when ballast water is discharged, as water-borne organisms can create havoc when deposited in new environments.

Uses

One of the functions of a yacht's keel is to provide ballast. Yacht keel.svg
One of the functions of a yacht's keel is to provide ballast.

Ballast takes many forms.

Small sailing vessels

The simplest form of ballast used in small day sailers is so-called "live ballast", or the weight of the crew. By sitting on the windward side of the hull, the heeling moment must lift the weight of the crew.

On more advanced racing boats, a wire harness called a trapeze is used to allow the crew to hang completely over the side of the hull without falling out; this provides much larger amounts of righting moment due to the larger leverage of the crew's weight, but can be dangerous if the wind suddenly dies, as the sudden loss of heeling moment can dump the crew in the water.

Larger sailing vessels

On larger modern vessels, the keel is made of or filled with a high density material, such as concrete, iron, or lead. By placing the weight as low as possible (often in a large bulb at the bottom of the keel) the maximum righting moment can be extracted from the given mass. Traditional forms of ballast carried inside the hull were stones or sand.

There are disadvantages to using high-density ballast. The first is the increased mass of the boat; a heavier boat sits lower in the water, increasing drag when it moves, and is generally less responsive to steering. A heavier boat is also more difficult to put on a trailer and tow behind an automobile. Secondly, since the ballast needs to be as low as possible, it is often placed into a centerboard or retracting keel, requiring a heavy-duty mechanism to lift the massive foil. The simplest solution is to use a fixed ballasted keel, but that makes the boat nearly incapable of sailing in very shallow water, and more difficult to handle when out of the water.

Canting keel

While prohibited by most class racing rules, some cutting-edge boats use a bulb of ballast on a long, thin keel that can tilt from side to side to create a canting keel. This lets the ballast be placed on the windward side, providing a far greater righting moment with a lower angle of heel. Tilting the keel, however, greatly reduces its lift, so canting keels are usually combined with a retractable centerboard or daggerboard that is deployed when the keel is tilted, and retracted (to reduce drag) when the keel is returned to the vertical. Some canting keels are designed so that when fully extended to either side they have an angle of attack of about 5° allowing the hydrofoil effect of the blade to lift the boat up and reduce wetted surface area for an increase in boat speed.

Water ballast

Sailing vessels

A common type of ballast for small boats that avoids many of the problems of high-density ballast is water ballast. While it may seem counter-intuitive that placing water in the hull (which is, after all, close to the same density as the water outside the hull fresh vs salt water) would add any stability, the water serves to displace air from the bottom of the hull; adding water ballast below the vertical center of gravity increases stability. The water ballast does not need to be lifted above the waterline to affect stability, as any material having greater bulk density than air will have an effect on the centre of gravity. It is the relationship between centre of gravity and centre of buoyancy that dictates the righting moment.

The advantage of water ballast is that the tanks can be emptied, reducing draft or the weight of the boat (e.g. for transport on ground) and water added back in (in small boats, simply by opening up the valves and letting the water flow in) after the boat is launched or cargo unloaded. Pumps can also be used to empty the leeward ballast tank and fill the windward tank as the boat tacks, and the quantity of ballast can be varied to keep the boat at the optimum angle of heel.

A disadvantage of water ballast is that water is not very dense and therefore the tanks required take up more space than other forms of ballast. Some manufacturers offer flexible ballast bags that are mounted outboard of the hull on both sides, and pumps that use the boat's speed through the water for power. When under way, the pump can be used to fill the windward side, while the lee side is allowed to drain. This system, while not very attractive, does allow significant gains in righting force with no modifications to the hull.

A trick commonly used on boats with water ballast is to link port and starboard tanks with a valved pipe. When preparing to tack, the valve is opened, and water in the windward tank, which is higher, is allowed to flow to the lee side, and the sheet is let off to keep the boat from heeling too far. Once as much water as possible has been transferred to the lee side, the boat is brought about and the sail sheeted in, lifting the newly full windward tank. A simple hand pump can then be used to move any remaining water from the lee to the windward tank.

Powered vessels

Tugboat Boss discharging ballast water before departure Tugboat Boss discharging ballast water before departure.jpg
Tugboat Boss discharging ballast water before departure

On empty cargo vessels water is added to ballast tanks to increase propeller immersion, to improve steering, and to control trim and draft.

Environmental impacts and regulations

A cargo ship discharging ballast water into the sea. Ship pumping ballast water.jpg
A cargo ship discharging ballast water into the sea.
Diagram showing the water pollution of the seas from untreated ballast water discharges Ballast water en.svg
Diagram showing the water pollution of the seas from untreated ballast water discharges

Ballast water discharges by ships can have a negative impact on the marine environment. The discharge of ballast water and sediments by ships is governed globally under the Ballast Water Management Convention, since its entry into force in September 2017. It is also controlled through national regulations, which may be separate from the Convention, such as in the United States.

Cruise ships, large tankers, and bulk cargo carriers use a huge amount of ballast water, which is often taken on in the coastal waters in one region after ships discharge wastewater or unload cargo, and discharged at the next port of call, wherever more cargo is loaded. Ballast water discharge typically contains a variety of biological materials, including plants, animals, viruses, and bacteria. These materials often include non-native, nuisance, and exotic species that can cause extensive ecological and economic damage to aquatic ecosystems, along with serious human health issues including death. Although similarly harmful to the environment, ballast water discharge is different than bilge pollution, which occurs when pollutants from a ship's heavy machinery leak into the ocean.

See also

Related Research Articles

<span class="mw-page-title-main">Hull (watercraft)</span> Watertight buoyant body of a ship or boat

A hull is the watertight body of a ship, boat, submarine, or flying boat. The hull may open at the top, or it may be fully or partially covered with a deck. Atop the deck may be a deckhouse and other superstructures, such as a funnel, derrick, or mast. The line where the hull meets the water surface is called the waterline.

<span class="mw-page-title-main">Sailing</span> Propulsion of a vehicle by wind power

Sailing employs the wind—acting on sails, wingsails or kites—to propel a craft on the surface of the water, on ice (iceboat) or on land over a chosen course, which is often part of a larger plan of navigation.

<span class="mw-page-title-main">Sailboat</span> Boat propelled partly or entirely by sails

A sailboat or sailing boat is a boat propelled partly or entirely by sails and is smaller than a sailing ship. Distinctions in what constitutes a sailing boat and ship vary by region and maritime culture.

<span class="mw-page-title-main">Keel</span> Lower centreline structural element of a ship or boat hull

The keel is the bottom-most longitudinal structural element on a watercraft. On some sailboats, it may have a hydrodynamic and counterbalancing purpose, as well. The laying of the keel is often the initial step in the construction of a ship. In the British and American shipbuilding traditions, this event marks the beginning date of a ship's construction.

<span class="mw-page-title-main">Metacentric height</span> Measurement of the initial static stability of a floating body

The metacentric height (GM) is a measurement of the initial static stability of a floating body. It is calculated as the distance between the centre of gravity of a ship and its metacentre. A larger metacentric height implies greater initial stability against overturning. The metacentric height also influences the natural period of rolling of a hull, with very large metacentric heights being associated with shorter periods of roll which are uncomfortable for passengers. Hence, a sufficiently, but not excessively, high metacentric height is considered ideal for passenger ships.

<span class="mw-page-title-main">Centreboard</span> Retractable keel which pivots out of a slot in the hull of a sailboat

A centreboard or centerboard (US) is a retractable hull appendage which pivots out of a slot in the hull of a sailboat, known as a centreboard trunk (UK) or centerboard case (US). The retractability allows the centreboard to be raised to operate in shallow waters, to move the centre of lateral resistance, to reduce drag when the full area of the centreboard is not needed, or when removing the boat from the water, as when trailering. A centreboard which consists of solely a pivoting metal plate is called a centerplate; the term "centreboard" may refer to either a wooden or a metal pivoting retractable foil. A daggerboard is similar but slides vertically rather than pivoting.

A monohull is a type of boat having only one hull, unlike multihulled boats which can have two or more individual hulls connected to one another.

<span class="mw-page-title-main">Planing (boat)</span> Mode of watercraft operation

Planing is the mode of operation for a waterborne craft in which its weight is predominantly supported by hydrodynamic lift, rather than hydrostatic lift (buoyancy).

<span class="mw-page-title-main">Capsizing</span> Action where a vessel turns on to its side or is upside down

Capsizing or keeling over occurs when a boat or ship is rolled on its side or further by wave action, instability or wind force beyond the angle of positive static stability or it is upside down in the water. The act of recovering a vessel from a capsize is called righting. Capsize may result from broaching, knockdown, loss of stability due to cargo shifting or flooding, or in high speed boats, from turning too fast.

<span class="mw-page-title-main">Leeboard</span> Sailboat pivoting keel

A leeboard is a form of pivoting keel used by a sailboat largely and very often in lieu of a fixed keel. Typically mounted in pairs on each side of a hull, leeboards function much like a centreboard, allowing shallow-draft craft to ply waters fixed keel boats cannot. Only the leeward side leeboard is used at any time, as it submerges when the boat heels under the force of the wind.

<span class="mw-page-title-main">Winged keel</span> Keel type

The winged keel is a sailboat keel layout first fitted on the 12-metre class yacht Australia II, 1983 America's Cup winner.

<span class="mw-page-title-main">Bulb keel</span>

A bulb keel is a keel, usually made with a high aspect ratio foil, that contains a ballast-filled bulb at the bottom, usually teardrop shaped. The purpose of the bulb keel is to place the ballast as low as possible, therefore gaining the maximum possible amount of leverage and thus the most righting moment. An example of a class of boats that use a bulb keel is the International 110 racing class, which uses a 300 lb (136 kg) cast iron bulb keel on a boat whose minimum racing weight is 910 lb (414 kg).

<span class="mw-page-title-main">Canting keel</span>

A canting keel is a form of sailing ballast, suspended from a rigid canting strut beneath the boat, which can be swung to windward of a boat under sail, in order to counteract the heeling force of the sail. The canting keel must be able to pivot to either port or starboard, depending on the current tack.

<span class="mw-page-title-main">Ballast tank</span> Compartment for holding liquid ballast

A ballast tank is a compartment within a boat, ship or other floating structure that holds water, which is used as ballast to provide hydrostatic stability for a vessel, to reduce or control buoyancy, as in a submarine, to correct trim or list, to provide a more even load distribution along the hull to reduce structural hogging or sagging stresses, or to increase draft, as in a semi-submersible vessel or platform, or a SWATH, to improve seakeeping. Using water in a tank provides easier weight adjustment than the stone or iron ballast used in older vessels, and makes it easy for the crew to reduce a vessel's draft when it enters shallower water, by temporarily pumping out ballast. Airships use ballast tanks mainly to control buoyancy and correct trim.

<span class="mw-page-title-main">Draft (hull)</span> Depth of a vessel below its waterline

The draft or draught of a ship is a determined depth of the vessel below the waterline, measured vertically to its hull's lowest—its propellers, or keel, or other reference point. Draft varies according to the loaded condition of the ship. A deeper draft means the ship will have greater vertical depth below the waterline. Draft is used in under keel clearance calculations, where the draft is calculated with the available depth of water to ensure the ship can navigate safely, without grounding. Navigators can determine their draught by calculation or by visual observation.

<span class="mw-page-title-main">Ship stability</span> Ship response to disturbance from an upright condition

Ship stability is an area of naval architecture and ship design that deals with how a ship behaves at sea, both in still water and in waves, whether intact or damaged. Stability calculations focus on centers of gravity, centers of buoyancy, the metacenters of vessels, and on how these interact.

The MACS3 Loading Computer System is a computer controlled loading system for commercial vessels, developed by Navis Carrier & Vessel Solutions. Prior to October, 2017 it was offered by Interschalt maritime systems GmbH, and before 2007 - by Seacos Computersysteme & Software GmbH.

<span class="mw-page-title-main">Ballast</span> Material that is used to provide stability to a vehicle or structure

Ballast is dense material used as a weight to provide stability to a vehicle or structure. Ballast, other than cargo, may be placed in a vehicle, often a ship or the gondola of a balloon or airship, to provide stability. A compartment within a boat, ship, submarine, or other floating structure that holds water is called a ballast tank. Water should be moved in and out from the ballast tank to balance the ship. In a vessel that travels on the water, the ballast will be kept below the water level, to counteract the effects of weight above the water level. The ballast may be redistributed in the vessel or disposed of altogether to change its effects on the movement of the vessel.

The ETAP 21i is a Belgian trailerable sailboat that was designed by Mortain & Mavrikios as a cruiser and first built in 1997.

A variable-buoyancy pressure vessel system is a type of rigid buoyancy control device for diving systems that retains a constant volume and varies its density by changing the weight (mass) of the contents, either by moving the ambient fluid into and out of a rigid pressure vessel, or by moving a stored liquid between internal and external variable-volume containers. A pressure vessel is used to withstand the hydrostatic pressure of the underwater environment. A variable-buoyancy pressure vessel can have an internal pressure greater or less than ambient pressure, and the pressure difference can vary from positive to negative within the operational depth range, or remain either positive or negative throughout the pressure range, depending on design choices.

References

This article incorporates text from a public domain Congressional Research Service report: Copeland, Claudia. "Cruise Ship Pollution: Background, Laws and Regulations, and Key Issues" (Order Code RL32450). Congressional Research Service (Updated February 6, 2008).