Ship resistance and propulsion

Last updated
Sketch by Tudor shipwright Mathew Baker Matthew Baker - Bionique.jpg
Sketch by Tudor shipwright Mathew Baker

A ship must be designed to move efficiently through the water with a minimum of external force. For thousands of years ship designers and builders of sailing vessels used rules of thumb based on the midship-section area to size the sails for a given vessel. The hull form and sail plan for the clipper ships, for example, evolved from experience, not from theory. It was not until the advent of steam power and the construction of large iron ships in the mid-19th century that it became clear to ship owners and builders that a more rigorous approach was needed.

Contents

Definition

Ship resistance is defined as the force required to tow the ship in calm water at a constant velocity.

Components of resistance

A body in water which is stationary with respect to water, experiences only hydrostatic pressure. Hydrostatic pressure always acts to oppose the weight of the body. The total (upward) force due to this buoyancy is equal to the (downward) weight of the displaced water. If the body is in motion, then there are also hydrodynamic pressures that act on the body. For a displacement vessel, that is the usual type of ship, three main types of resistance are considered: that due to wave-making, that due to the pressure of the moving water on the form, often not calculated or measured separately, and that due to friction of moving water on the wetted surface of the hull. These can be split up into more components:

Total resistance
Residual resistance Skin friction resistance
Form effect on skin friction
Pressure resistance Friction resistance
Wave resistance Viscous pressure resistance
Wave making resistance Wavebreaking resistance Viscous resistance
Total resistance

Froude's experiments

When testing ship models and then comparing the results to actual ships, the models tend to overpredict the resistance of the ship.

Froude had observed that when a ship or model was at its so-called Hull speed the wave pattern of the transverse waves (the waves along the hull) have a wavelength equal to the length of the waterline. This means that the ship's bow was riding on one wave crest and so was its stern. This is often called the hull speed and is a function of the length of the ship

where constant (k) should be taken as: 2.43 for velocity (V) in kn and length (L) in metres (m) or, 1.34 for velocity (V) in kn and length (L) in feet (ft).

Observing this, Froude realized that the ship resistance problem had to be broken into two different parts: residuary resistance (mainly wave making resistance) and frictional resistance. To get the proper residuary resistance, it was necessary to recreate the wave train created by the ship in the model tests. He found for any ship and geometrically similar model towed at the suitable speed that:

There is a frictional drag that is given by the shear due to the viscosity. This can result in 50% of the total resistance in fast ship designs and 80% of the total resistance in slower ship designs.

To account for the frictional resistance Froude decided to tow a series of flat plates and measure the resistance of these plates, which were of the same wetted surface area and length as the model ship, and subtract this frictional resistance from the total resistance and get the remainder as the residuary resistance.

Friction

(Main article: Skin friction drag) In a viscous fluid, a boundary layer is formed. This causes a net drag due to friction. The boundary layer undergoes shear at different rates extending from the hull surface until it reaches the field flow of the water.

Wave-making resistance

(Main article: Wave-making resistance) A ship moving over the surface of undisturbed water sets up waves emanating mainly from the bow and stern of the ship. The waves created by the ship consist of divergent and transverse waves. The divergent waves are observed as the wake of a ship with a series of diagonal or oblique crests moving outwardly from the point of disturbance. These waves were first studied by William Thomson, 1st Baron Kelvin, who found that regardless of the speed of the ship, they were always contained within the 39° wedge shape (19.5° on each side) following the ship. The divergent waves do not cause much resistance against the ship's forward motion. However, the transverse waves appear as troughs and crests along the length of a ship and constitute the major part of the wave-making resistance of a ship. The energy associated with the transverse wave system travels at one half the phase velocity or the group velocity of the waves. The prime mover of the vessel must put additional energy into the system in order to overcome this expense of energy. The relationship between the velocity of ships and that of the transverse waves can be found by equating the wave celerity and the ship's velocity.

Propulsion

(Main article: Marine propulsion) Ships can be propelled by numerous sources of power: human, animal, or wind power (sails, kites, rotors and turbines), water currents, chemical or atomic fuels and stored electricity, pressure, heat or solar power supplying engines and motors. Most of these can propel a ship directly (e.g. by towing or chain), via hydrodynamic drag devices (e.g. oars and paddle wheels) and via hydrodynamic lift devices (e.g. propellers or jets). A few exotic means also exist, such as "fish-tail propulsion", rockets or magnetohydrodynamic propulsion.

See also

Related Research Articles

<span class="mw-page-title-main">Hull (watercraft)</span> Watertight buoyant body of a ship or boat

A hull is the watertight body of a ship, boat, or flying boat. The hull may open at the top, or it may be fully or partially covered with a deck. Atop the deck may be a deckhouse and other superstructures, such as a funnel, derrick, or mast. The line where the hull meets the water surface is called the waterline.

<span class="mw-page-title-main">Propeller</span> Device that transmits rotational power into linear thrust on a fluid

A propeller is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon a working fluid such as water or air. Propellers are used to pump fluid through a pipe or duct, or to create thrust to propel a boat through water or an aircraft through air. The blades are shaped so that their rotational motion through the fluid causes a pressure difference between the two surfaces of the blade by Bernoulli's principle which exerts force on the fluid. Most marine propellers are screw propellers with helical blades rotating on a propeller shaft with an approximately horizontal axis.

<span class="mw-page-title-main">Sailing</span> Propulsion of a vehicle by wind power

Sailing employs the wind—acting on sails, wingsails or kites—to propel a craft on the surface of the water, on ice (iceboat) or on land over a chosen course, which is often part of a larger plan of navigation.

<span class="mw-page-title-main">Naval architecture</span> Engineering discipline dealing with the design and construction of marine vessels

Naval architecture, or naval engineering, is an engineering discipline incorporating elements of mechanical, electrical, electronic, software and safety engineering as applied to the engineering design process, shipbuilding, maintenance, and operation of marine vessels and structures. Naval architecture involves basic and applied research, design, development, design evaluation (classification) and calculations during all stages of the life of a marine vehicle. Preliminary design of the vessel, its detailed design, construction, trials, operation and maintenance, launching and dry-docking are the main activities involved. Ship design calculations are also required for ships being modified. Naval architecture also involves formulation of safety regulations and damage-control rules and the approval and certification of ship designs to meet statutory and non-statutory requirements.

<span class="mw-page-title-main">Catamaran</span> Watercraft with two parallel hulls of equal size

A catamaran is a watercraft with two parallel hulls of equal size. The distance between a catamaran's hulls imparts resistance to rolling and overturning. Catamarans typically have less hull volume, smaller displacement, and shallower draft (draught) than monohulls of comparable length. The two hulls combined also often have a smaller hydrodynamic resistance than comparable monohulls, requiring less propulsive power from either sails or motors. The catamaran's wider stance on the water can reduce both heeling and wave-induced motion, as compared with a monohull, and can give reduced wakes.

Fluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. Since there is no contact between the moving parts, there is no sliding friction, allowing fluid bearings to have lower friction, wear and vibration than many other types of bearings. Thus, it is possible for some fluid bearings to have near-zero wear if operated correctly.

<span class="mw-page-title-main">Wake (physics)</span> Region of recirculating flow immediately behind or downstream of a moving or stationary solid body

In fluid dynamics, a wake may either be:

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. The Froude number is based on the speed–length ratio which he defined as:

<span class="mw-page-title-main">Ship model basin</span> Water tank used to carry out hydrodynamic tests

A ship model basin is a basin or tank used to carry out hydrodynamic tests with ship models, for the purpose of designing a new ship, or refining the design of a ship to improve the ship's performance at sea. It can also refer to the organization that owns and operates such a facility.

Hull speed or displacement speed is the speed at which the wavelength of a vessel's bow wave is equal to the waterline length of the vessel. As boat speed increases from rest, the wavelength of the bow wave increases, and usually its crest-to-trough dimension (height) increases as well. When hull speed is exceeded, a vessel in displacement mode will appear to be climbing up the back of its bow wave.

<span class="mw-page-title-main">Bulbous bow</span> Protruding bulb at the front of a ship

A bulbous bow is a protruding bulb at the bow of a ship just below the waterline. The bulb modifies the way the water flows around the hull, reducing drag and thus increasing speed, range, fuel efficiency, and stability. Large ships with bulbous bows generally have twelve to fifteen percent better fuel efficiency than similar vessels without them. A bulbous bow also increases the buoyancy of the forward part and hence reduces the pitching of the ship to a small degree.

In fluid dynamics, drag is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers or between a fluid and a solid surface.

<span class="mw-page-title-main">Ship motion test</span> Scale model hydrodynamic test to predict full size behaviour

In marine engineering, a ship motion test is hydrodynamic test performed with ship models for the purpose of designing a new ship, or refining the design of a ship to improve its performance at sea. Tests are carried out in a ship model basin or "towing tank". There are various types of test: the model may be towed along a straight line or circular path, and may be subjected to oscillations. Forces acting on the vessel are measured using a dynamometer. The tests may be evaluating the overall design, or focusing on the characteristics of a propeller.

<span class="mw-page-title-main">Submarine hull</span> Structural and hydrodynamic component enclosing the vessel

A submarine hull has two major components, the light hull and the pressure hull. The light hull of a submarine is the outer non-watertight hull which provides a hydrodynamically efficient shape. The pressure hull is the inner hull of a submarine that maintains structural integrity with the difference between outside and inside pressure at depth.

<span class="mw-page-title-main">Wave-making resistance</span> Energy of moving water away from a hull

Wave-making resistance is a form of drag that affects surface watercraft, such as boats and ships, and reflects the energy required to push the water out of the way of the hull. This energy goes into creating the wave.

A velocity prediction program (VPP) is a computer program which solves for the performance of a sailing yacht in various wind conditions by balancing hull and sail forces. VPPs are used by yacht designers, boat builders, model testers, sailors, sailmakers, also America's Cup teams, to predict the performance of a sailboat before it has been built or prior to major modifications.

<span class="mw-page-title-main">Aquatic locomotion</span>

Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, fish, molluscs, amphibians, reptiles, birds, and mammals.

<span class="mw-page-title-main">Kelvin wake pattern</span> Pattern of movement across water

Waterfowl and boats moving across the surface of water produce a wake pattern, first explained mathematically by Lord Kelvin and known today as the Kelvin wake pattern.

<span class="mw-page-title-main">Forces on sails</span>

Forces on sails result from movement of air that interacts with sails and gives them motive power for sailing craft, including sailing ships, sailboats, windsurfers, ice boats, and sail-powered land vehicles. Similar principles in a rotating frame of reference apply to windmill sails and wind turbine blades, which are also wind-driven. They are differentiated from forces on wings, and propeller blades, the actions of which are not adjusted to the wind. Kites also power certain sailing craft, but do not employ a mast to support the airfoil and are beyond the scope of this article.

Propeller theory is the science governing the design of efficient propellers. A propeller is the most common propulsor on ships, and on small aircraft.

References