Shq1

Last updated
An image of the secondary structure of an H/ACA box snoRNA transcript. This RNA transcript forms a class of protein-RNA complexes called H/ACA box snoRNPs. Shq1p is believed to interact with these snoRNP complexes. RF00265.jpg
An image of the secondary structure of an H/ACA box snoRNA transcript. This RNA transcript forms a class of protein-RNA complexes called H/ACA box snoRNPs. Shq1p is believed to interact with these snoRNP complexes.

Shq1p is a protein involved in the rRNA processing pathway. It was discovered by Pok Yang in the Chanfreau laboratory at UCLA. Depletion of Shq1p has led to decreased level of various H/ACA box snoRNAs (H/ACA box snoRNAs are responsible for pseuduridylation of pre-rRNA) and certain pre-rRNA intermediates. [1]

Contents

Background

During the synthesis of eukaryotic ribosomes, four mature ribosomal RNAs (the 5S, 5.8S, 18S, and 25S) must be synthesized. Three of these rRNAs (5.8S, 18S, and 25S) come from a single pre-rRNA known as the 35S. Although many of the intermediates in this rRNA processing pathway have been identified in the last thirty years, there are still a number of proteins involved in this process whose specific function is unknown.

Function

Shq1, a protein thought to play a role in the stabilization and/or production of box H/ACA snoRNA, is still uncharacterized. It has been proposed that Shq1, along with Naf1p, is involved in the initial steps of the biogenesis of H/ACA box snoRNPs (box H/ACA snoRNAs form complexes with proteins, thereby forming snoRNPs) because of its association with certain snoRNP proteins during the snoRNP’s maturation, while showing very little association with the mature snoRNP complex. [1] Despite the known involvement of Shq1 in H/ACA box snoRNP's production, the exact function of this protein in the overall rRNA processing pathway is still unknown.

See also

Related Research Articles

<span class="mw-page-title-main">Nucleolus</span> Largest structure in the nucleus of eukaryotic cells

The nucleolus is the largest structure in the nucleus of eukaryotic cells. It is best known as the site of ribosome biogenesis, which is the synthesis of ribosomes. The nucleolus also participates in the formation of signal recognition particles and plays a role in the cell's response to stress. Nucleoli are made of proteins, DNA and RNA, and form around specific chromosomal regions called nucleolar organizing regions. Malfunction of nucleoli can be the cause of several human conditions called "nucleolopathies" and the nucleolus is being investigated as a target for cancer chemotherapy.

<span class="mw-page-title-main">Ribosomal RNA</span> RNA component of the ribosome, essential for protein synthesis in all living organisms

Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal DNA (rDNA) and then bound to ribosomal proteins to form small and large ribosome subunits. rRNA is the physical and mechanical factor of the ribosome that forces transfer RNA (tRNA) and messenger RNA (mRNA) to process and translate the latter into proteins. Ribosomal RNA is the predominant form of RNA found in most cells; it makes up about 80% of cellular RNA despite never being translated into proteins itself. Ribosomes are composed of approximately 60% rRNA and 40% ribosomal proteins, though this ratio differs between prokaryotes and eukaryotes.

Preribosomal RNA (pre-rRNA) is the precursor to mature ribosomal RNA (rRNA), which is a component of ribosomes. Pre-rRNA is first transcribed from ribosomal DNA (rDNA), then cleaved and processed into mature rRNA.

In molecular biology, small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guide chemical modifications of other RNAs, mainly ribosomal RNAs, transfer RNAs and small nuclear RNAs. There are two main classes of snoRNA, the C/D box snoRNAs, which are associated with methylation, and the H/ACA box snoRNAs, which are associated with pseudouridylation. SnoRNAs are commonly referred to as guide RNAs but should not be confused with the guide RNAs that direct RNA editing in trypanosomes or the guide RNAs (gRNAs) used by Cas9 for CRISPR gene editing.

<span class="mw-page-title-main">Ribosome biogenesis</span> Cellular process

Ribosome biogenesis is the process of making ribosomes. In prokaryotes, this process takes place in the cytoplasm with the transcription of many ribosome gene operons. In eukaryotes, it takes place both in the cytoplasm and in the nucleolus. It involves the coordinated function of over 200 proteins in the synthesis and processing of the three prokaryotic or four eukaryotic rRNAs, as well as assembly of those rRNAs with the ribosomal proteins. Most of the ribosomal proteins fall into various energy-consuming enzyme families including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. About 60% of a cell's energy is spent on ribosome production and maintenance.

<span class="mw-page-title-main">Small nucleolar RNA SNORA46</span> Non-coding RNA molecule which functions in the biogenesis of other small nuclear RNAs

In molecular biology, Small nucleolar RNA SNORA46 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA46 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA46 is predicted to guide the pseudouridylation of U649 of 18S ribosomal RNA (rRNA). Pseudouridylation is the isomerisation of the nucleoside uridine to the different isomeric form pseudouridine.

<span class="mw-page-title-main">Small nucleolar RNA SNORA50</span> Non-coding RNA molecule which functions in the biogenesis of other small nuclear RNAs

In molecular biology, Small nucleolar RNA SNORA50 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA50 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA50 is predicted to guide the pseudouridylation of U34 and U105 of 18S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.

<span class="mw-page-title-main">Small nucleolar RNA SNORA55</span> Non-coding guide RNA associated with GAR1 protein

In molecular biology, Small nucleolar RNA SNORA55 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA55 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA55 is predicted to guide the pseudouridylation of U36 of 18S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.

<span class="mw-page-title-main">Small nucleolar RNA SNORA69</span>

In molecular biology, Small nucleolar RNA SNORA69 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".

<span class="mw-page-title-main">Small nucleolar RNA SNORA72</span>

In molecular biology, small nucleolar RNA SNORA72 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".

<span class="mw-page-title-main">Small nucleolar RNA SNORD32</span> Non-coding RNA molecule

In molecular biology, snoRNA U32 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

<span class="mw-page-title-main">Small nucleolar RNA SNORD56</span>

In molecular biology, snoRNA U56 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

<span class="mw-page-title-main">Small nucleolar RNA SNORD62</span>

In molecular biology, snoRNA U62 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

<span class="mw-page-title-main">Small nucleolar RNA SNORD82</span>

In molecular biology, snoRNA U82 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

<span class="mw-page-title-main">Small nucleolar RNA Z199</span>

In molecular biology, snoRNA Z199 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

<span class="mw-page-title-main">U8 small nucleolar RNA</span>

In molecular biology, U8 small nucleolar RNA is the RNA component of a small RNA:protein complex which is required for biogenesis of mature large subunit ribosomal RNAs, 5.8S and 28S rRNAs.

<span class="mw-page-title-main">Small nucleolar RNA SNORA70</span>

In molecular biology, Small nucleolar RNA SNORA70 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".

<span class="mw-page-title-main">Small nucleolar RNA SNORD93</span>

In molecular biology, Small Nucleolar RNA SNORD93 is a non-coding RNA (ncRNA) molecule that functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the Eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and is also often referred to as a guide RNA.

<span class="mw-page-title-main">Small nucleolar RNA SNORD98</span> Non-coding RNA molecule, which functions in the biogenesis of other small nuclear RNAs

In molecular biology, Small Nucleolar RNA SNORD98 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

<span class="mw-page-title-main">Dyskerin</span> Protein

H/ACA ribonucleoprotein complex subunit 4 is a protein that in humans is encoded by the gene DKC1.

References

  1. 1 2 Yang PK, Rotondo G, Porras T, Legrain P, Chanfreau G. The Shq1p.Naf1p complex is required for box H/ACA small nucleolar ribonucleoprotein particle biogenesis. J Biol Chem. 2002 Nov 22;277(47):45235-42.