Simulation theory of empathy

Last updated

The simulation theory of empathy holds that humans anticipate and make sense of the behavior of others by activating mental processes that, if they culminated in action, would produce similar behavior. This includes intentional behavior as well as the expression of emotions. The theory says that children use their own emotions to predict what others will do; we project our own mental states onto others.

Contents

Simulation theory is not primarily a theory about empathy, but rather a theory of how people understand others—that they do so by way of a kind of empathetic response. This theory uses more biological evidence than other theories of mind, such as the theory-theory.

Origin

Simulation theory is based in philosophy of mind, a branch of philosophy that studies the nature of the mind and its relationship to the brain, especially the work of Alvin Goldman and Robert Gordon. The discovery of mirror neurons in macaque monkeys provides a physiological mechanism to explain the common coding between perception and action (see Wolfgang Prinz) [1] and the hypothesis of a similar mirror neuron system in the human brain. [2] Since the discovery of the mirror neuron system, many studies have been carried out to examine the role of this system in action understanding, emotion, and other social functions.

Development

Mirror neurons are activated both when actions are executed and when actions are observed. This function of mirror neurons may explain how people recognize and understand the states of others: they mirror the observed action in the brain as if they conducted the observed action. [3]

Two sets of evidence suggest that mirror neurons in the monkey have a role in action understanding. First, the activation of mirror neurons requires biological effectors such as the hand or mouth. Mirror neurons do not respond to actions undertaken by tools like pliers. [4] Mirror neurons respond to neither the sight of an object alone nor to an action without an object (intransitive action). Umilta and colleagues demonstrated that a subset of mirror neurons fired in the observer when a final critical part of the action was not visible to that observer. [5] The experimenter showed his hand moving toward a cube and grasping it, and later showed the same action without showing the final grasping of the cube (the cube was behind an occluder). Mirror neurons fired in both scenarios. However mirror neurons did not fire when the observer knew that there was not a cube behind the occluder.

Second, responses of mirror neurons to the same action are different depending on context of the action. A single cell recording experiment with monkeys demonstrated the different level of activation of mouth mirror neurons when monkey observed mouth movement depending on context (ingestive actions such as sucking juice vs. communicative actions such as lip-smacking or tongue protrusions). [6] An fMRI study also showed that mirror neurons respond to the action of grasping a cup differently depending on context (to drink a cup of coffee vs. to clean a table on which a cup was placed). [7]

Since mirror neurons fire both for someone watching an action and someone completing an action, they may only predict actions, not beliefs or desires.

Emotion understanding

Shared neural representation for a motor behavior and its observation has been extended into the domains of feelings and emotions. Not only observations of movements but also those of facial expressions activate the same brain regions that are activated by direct experiences. In an fMRI study, the same brain regions activated when people imitated and observed emotional facial expressions such as happy, sad, angry, surprise, disgust, and afraid. [8]

Observing video clips that displayed facial expressions indicating disgust activated the neural networks typical of direct experience of disgust. [9] Similar results have been found in the case of touch. Watching movies in which someone touched legs or faces activated the somatosensory cortex for direct feeling of the touch. [10] A similar mirror system exists in perceiving pain. When people see other people feel pain, people feel pain not only affectively, [11] but also sensorially. [12]

These results suggest that understanding another's feelings and emotions is driven not by cognitive deduction of what the stimuli means but by automatic activation of somatosensory neurons. A recent study on pupil size directly demonstrated emotion perception as an automatic process modulated by mirror systems. [13] When people saw sad faces, pupil sizes influenced viewers in perceiving and judging emotional states without explicit awareness of differences of pupil size. When pupil size was 180% of original size, people perceived a sad face as less negative and less intense than when pupil was smaller than or equal to original pupil size. This mechanism was correlated with brain regions implicated in emotion processing, such as the amygdala. Viewers mirror the size of their own pupils to those of sad faces they watch. Considering that pupil size is beyond voluntary control, the change of pupil size upon emotion judgment is a good indication that understanding emotions is automatic process. However, the study could not find that other emotional faces, such as faces displaying happiness and anger, influence pupil size as sadness did.

Epistemological role of empathy

Based on findings from neuroimaging studies, de Vignemont and Singer proposed empathy as a crucial factor in human communication: "Empathy might enable us to make faster and more accurate predictions of other people's needs and actions and discover salient aspects of our environment." [14] Mental mirroring of actions and emotions may enable humans to understand other's actions and their related environment quickly, and thus help humans communicate efficiently. [3]

In an fMRI study, a mirror system has been proposed as common neural substrate that mediates the experience of basic emotions. [15] Participants watched video clips of happy, sad, angry, and disgusted facial expressions, and researchers measured their empathy quotient (EQ). Specific brain regions relevant to the four emotions were found to be correlated with the EQ while the mirror system (i.e., the left dorsal inferior frontal gyrus/premotor cortex) was correlated to the EQ across all emotions. The authors interpreted this result as an evidence that action perception mediates face perception to emotion perception.

Empathy for pain

A paper published in Science [12] challenges the idea that pain sensations and mirror neurons play a role in empathy for pain. Specifically, the authors found that activity in the anterior insula and the anterior cingulate cortex (two regions known to be responsible for the affective experience of pain) was present both when one's self and when another person were presented with a painful stimulus, but the rest of the pain matrix responsible for sensation was not active. Furthermore, participants merely saw the hand of another person with the electrode on it, making it unlikely that "mirroring" could have caused the empathic response. However, a number of other studies, using magnetoencephalography and functional MRI have since demonstrated that empathy for pain does involve the somatosensory cortex, which supports the simulation theory. [16]

Support for the anterior insula and anterior cingulate cortex being the neural substrates of empathy include Wicker et al., 2003 who report that their "core finding is that the anterior insula is activated both during observation of disgusted facial expressions and during the emotion of disgust evoked by unpleasant odorants." [9] :655

Furthermore, one study demonstrated that "for actions, emotions, and sensations both animate and inanimate touch activates our inner representation of touch." They note, however that "it is important at this point to clarify the fact that we do not believe that the activation we observe evolved in order to empathize with other objects or human beings" [10] :343

Empathy activating altruism

This model states that empathy activates only one interpersonal motivation: altruism. Theoretically, this model makes sense, because empathy is an other-focused emotion. There is an impressive history of research suggesting that empathy, when activated, causes people to act in ways to benefit the other, such as receiving electric shocks for the other. [17] These findings have often been interpreted in terms of empathy causing increased altruistic motivation, which in turn causes helping behavior.

See also

Related Research Articles

Empathy Capacity to understand or feel what another person is experiencing

Empathy is the capacity to understand or feel what another person is experiencing from within their frame of reference, that is, the capacity to place oneself in another's position. Definitions of empathy encompass a broad range of social, cognitive, and emotional processes primarily concerned with understanding others. Types of empathy include cognitive empathy, emotional empathy, somatic empathy, and spiritual empathy.

Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell. It is an attempt to explain synaptic plasticity, the adaptation of brain neurons during the learning process. It was introduced by Donald Hebb in his 1949 book The Organization of Behavior. The theory is also called Hebb's rule, Hebb's postulate, and cell assembly theory. Hebb states it as follows:

Let us assume that the persistence or repetition of a reverberatory activity tends to induce lasting cellular changes that add to its stability. ... When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.

V. S. Ramachandran Indian-American neuroscientist

Vilayanur Subramanian Ramachandran is an Indian-American neuroscientist. He is known for his wide-ranging experiments and theories in behavioral neurology, including the invention of the mirror box. Ramachandran is a Distinguished Professor in UCSD's Department of Psychology, where he is the director of the Center for Brain and Cognition.

Brodmann area 44

Brodmann area 44, or BA44, is part of the frontal cortex in the human brain. Situated just anterior to premotor cortex (BA6) and on the lateral surface, inferior to BA9.

A mirror neuron is a neuron that fires both when an animal acts and when the animal observes the same action performed by another. Thus, the neuron "mirrors" the behavior of the other, as though the observer were itself acting. Such neurons have been directly observed in human and primate species, and in birds.

Motor cortex Region of the cerebral cortex

The motor cortex is the region of the cerebral cortex involved in the planning, control, and execution of voluntary movements. Classically, the motor cortex is an area of the frontal lobe located in the posterior precentral gyrus immediately anterior to the central sulcus.

Insular cortex Portion of the mammalian cerebral cortex

The insular cortex is a portion of the cerebral cortex folded deep within the lateral sulcus within each hemisphere of the mammalian brain.

Emotional contagion is a form of social contagion that involves the spontaneous spread of emotions and related behaviors. Such emotional convergence can happen from one person to another, or in a larger group. Emotions can be shared across individuals in many ways, both implicitly or explicitly. For instance, conscious reasoning, analysis, and imagination have all been found to contribute to the phenomenon. The behaviour has been found in humans, other primates, dogs, and chickens.

Premotor cortex

The premotor cortex is an area of the motor cortex lying within the frontal lobe of the brain just anterior to the primary motor cortex. It occupies part of Brodmann's area 6. It has been studied mainly in primates, including monkeys and humans. The functions of the premotor cortex are diverse and not fully understood. It projects directly to the spinal cord and therefore may play a role in the direct control of behavior, with a relative emphasis on the trunk muscles of the body. It may also play a role in planning movement, in the spatial guidance of movement, in the sensory guidance of movement, in understanding the actions of others, and in using abstract rules to perform specific tasks. Different subregions of the premotor cortex have different properties and presumably emphasize different functions. Nerve signals generated in the premotor cortex cause much more complex patterns of movement than the discrete patterns generated in the primary motor cortex.

Mu wave Electrical activity in the part of the brain controlling voluntary movement

The sensorimotor mu rhythm, also known as mu wave, comb or wicket rhythms or arciform rhythms, are synchronized patterns of electrical activity involving large numbers of neurons, probably of the pyramidal type, in the part of the brain that controls voluntary movement. These patterns as measured by electroencephalography (EEG), magnetoencephalography (MEG), or electrocorticography (ECoG), repeat at a frequency of 7.5–12.5 Hz, and are most prominent when the body is physically at rest. Unlike the alpha wave, which occurs at a similar frequency over the resting visual cortex at the back of the scalp, the mu rhythm is found over the motor cortex, in a band approximately from ear to ear. A person suppresses mu rhythms when he or she performs a motor action or, with practice, when he or she visualizes performing a motor action. This suppression is called desynchronization of the wave because EEG wave forms are caused by large numbers of neurons firing in synchrony. The mu rhythm is even suppressed when one observes another person performing a motor action or an abstract motion with biological characteristics. Researchers such as V. S. Ramachandran and colleagues have suggested that this is a sign that the mirror neuron system is involved in mu rhythm suppression, although others disagree.

The developmental needs meeting strategy (DNMS) is a psychotherapy approach developed by Shirley Jean Schmidt. It is designed to treat adults with psychological trauma wounds and with attachment wounds. The DNMS is an ego state therapy based on the assumption that the degree to which developmental needs were not adequately met is the degree to which a client may be stuck in childhood. This model aims to identify ego states that are stuck in the past and help them get unstuck by remediating those unmet developmental needs. The processing starts with the DNMS therapist guiding a patient to mobilize three internal Resource ego states: a Nurturing Adult Self, a Protective Adult Self, and a Spiritual Core Self. The therapist then guides these three Resources to gently help wounded child ego states get unstuck from the past by meeting their unmet developmental needs, helping them process through painful emotions, and by establishing an emotional bond. The relationship wounded child parts have with these Resources is considered the primary agent for change.

Giacomo Rizzolatti Italian neurophysiologist (born 1937)

Giacomo Rizzolatti is an Italian neurophysiologist who works at the University of Parma. Born in Kyiv, UkSSR, he is the Senior Scientist of the research team that discovered mirror neurons in the frontal and parietal cortex of the macaque monkey, and has written many scientific articles on the topic. He also proposed the premotor theory of attention. He is a past president of the European Brain and Behaviour Society. Rizzolatti was the 2007 co-recipient, with Leonardo Fogassi and Vittorio Gallese, for the University of Louisville Grawemeyer Award for Psychology. He is an elected member of the Academia Europaea, National Academy of Sciences, and Royal Society In 2020 he adheres to Empathism.

The concept of motor cognition grasps the notion that cognition is embodied in action, and that the motor system participates in what is usually considered as mental processing, including those involved in social interaction. The fundamental unit of the motor cognition paradigm is action, defined as the movements produced to satisfy an intention towards a specific motor goal, or in reaction to a meaningful event in the physical and social environments. Motor cognition takes into account the preparation and production of actions, as well as the processes involved in recognizing, predicting, mimicking, and understanding the behavior of other people. This paradigm has received a great deal of attention and empirical support in recent years from a variety of research domains including embodied cognition, developmental psychology, cognitive neuroscience, and social psychology.

Vittorio Gallese

Vittorio Gallese is professor of Psychobiology at the University of Parma, Italy, and was professor in Experimental Aesthetics at the University of London, UK (2016-2018). He is an expert in neurophysiology, cognitive neuroscience, social neuroscience, and philosophy of mind. Gallese is one of the discoverers of mirror neurons. His research attempts to elucidate the functional organization of brain mechanisms underlying social cognition, including action understanding, empathy, language, mindreading and aesthetic experience.

Christian Keysers French and German neuroscientist

Christian Keysers is a French and German neuroscientist.

Pain empathy is a specific variety of empathy that involves recognizing and understanding another person's pain.

Mirror-touch synesthesia is a rare condition which causes individuals to experience a similar sensation in the same part or opposite part of the body that another person feels. For example, if someone with this condition were to observe someone touching their cheek, they would feel the same sensation on their own cheek. Synesthesia, in general, is described as a condition in which a stimulus causes an individual to experience an additional sensation. Synesthesia is usually a developmental condition; however, recent research has shown that mirror touch synesthesia can be acquired after sensory loss following amputation.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

Valeria Gazzola is an Italian neuroscientist, associate professor at the Faculty of Social and Behavioral Sciences at the University of Amsterdam (UvA) and member of the Young Academy of Europe. She is also a tenured department head at the Netherlands Institute for Neuroscience (NIN) in Amsterdam, where she leads her own research group and the Social Brain Lab together with neuroscientist Christian Keysers. She is a specialist in the neural basis of empathy and embodied cognition: Her research focusses on how the brain makes individuals sensitive to the actions and emotions of others and how this affects decision-making.

An empathy gap, sometimes referred to as an empathy bias, is a breakdown or reduction in empathy where it might otherwise be expected to occur. Empathy gaps may occur due to a failure in the process of empathizing or as a consequence of stable personality characteristics, and may reflect either a lack of ability or motivation to empathize.

References

  1. di Pellegrino, G.; Fadiga, L.; Fogassi, L.; Gallese, V. & Rizzolatti, G. (1992). "Understanding motor events - A neurophysiological study" (PDF). Experimental Brain Research. 91 (1): 176–180. doi:10.1007/BF00230027. PMID   1301372. S2CID   206772150.
  2. Preston, S.D. & de Wall, F.B.M. (2002). "Empathy: its ultimate and proximate bases" (PDF). Behavioral and Brain Sciences. 25 (1): 1–20, discussion 20–71. CiteSeerX   10.1.1.554.2794 . doi:10.1017/S0140525X02000018. PMID   12625087.
  3. 1 2 Gallese, V.; Keysers, C. & Rizzolatti, G. (2004). "A unifying view of the basis of social cognition". Trends in Cognitive Sciences. 8 (9): 396–403. doi:10.1016/j.tics.2004.07.002. PMID   15350240. S2CID   11129793.
  4. Gallese, V.; Fadiga, L.; Fogassi, L. & Rizzolatti, G. (1996). "Action recognition in the premotor cortex" (PDF). Brain. 119 (Pt 2): 593–609. doi: 10.1093/brain/119.2.593 . PMID   8800951.
  5. Umilta, M. A.; Kohler, E.; Gallese, V.; Fogassi, L.; Fadiga, L.; Keysers, C.; et al. (2001). "I know what you are doing: A neurophysiological study". Neuron. 31 (1): 155–165. doi: 10.1016/S0896-6273(01)00337-3 . PMID   11498058.
  6. Ferrari, P. F.; Gallese, V.; Rizzolatti, G. & Fogassi, L. (2003). "Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex". European Journal of Neuroscience. 17 (8): 1703–1714. CiteSeerX   10.1.1.177.2287 . doi:10.1046/j.1460-9568.2003.02601.x. PMID   12752388. S2CID   1915143.
  7. Iacoboni, M.; Molnar-Szakacs, I.; Gallese, V.; Buccino, G.; Mazziotta, J. C. & Rizzolatti, G. (2005). "Grasping the intentions of others with one's own mirror neuron system". PLOS Biology. 3 (3): 529–535. doi:10.1371/journal.pbio.0030079. PMC   1044835 . PMID   15736981.
  8. Carr, L.; Iacoboni, M.; Dubeau, M. C.; Mazziotta, J. C. & Lenzi, G. L. (2003). "Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas". Proceedings of the National Academy of Sciences of the United States of America. 100 (9): 5497–5502. Bibcode:2003PNAS..100.5497C. doi: 10.1073/pnas.0935845100 . PMC   154373 . PMID   12682281.
  9. 1 2 Wicker, B.; Keysers, C.; Plailly, J.; Royet, J. P.; Gallese, V. & Rizzolatti, G. (2003). "Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust". Neuron. 40 (3): 655–664. doi: 10.1016/S0896-6273(03)00679-2 . PMID   14642287.
  10. 1 2 Keysers, C.; Wicker, B.; Gazzola, V.; Anton, J. L.; Fogassi, L. & Gallese, V. (2004). "A touching sight: SII/PV activation during the observation and experience of touch". Neuron. 42 (2): 335–346. doi: 10.1016/S0896-6273(04)00156-4 . PMID   15091347.
  11. Avenanti, A.; Paluello, L. M.; Bufalari, I. & Aglioti, S. M. (2006). "Stimulus-driven modulation of motor-evoked potentials during observation of others' pain". NeuroImage. 32 (1): 316–324. doi:10.1016/j.neuroimage.2006.03.010. PMID   16675270. S2CID   23907332.
  12. 1 2 Singer, T.; Seymour, B.; O'Doherty, J.; Kaube, H.; Dolan, R. J. & Frith, C. D. (2004). "Empathy for pain involves the affective but not sensory components of pain". Science. 303 (5661): 1157–1162. Bibcode:2004Sci...303.1157S. doi:10.1126/science.1093535. hdl: 21.11116/0000-0001-A020-5 . JSTOR   3836287. PMID   14976305. S2CID   14727944.
  13. Harrison, N. A.; Singer, T.; Rotshtein, P.; Dolan, R. J. & Critchley, H. D. (2006). "Pupillary contagion: Central mechanisms engaged in sadness processing". SCAN. 1 (1): 5–17. doi:10.1093/scan/nsl006. PMC   1716019 . PMID   17186063.
  14. de Vignemont, F. & Singer, T. (2006). "The empathic brain: How, when and why?" (PDF). Trends in Cognitive Sciences. 10 (10): 435–441. doi:10.1016/j.tics.2006.08.008. PMID   16949331. S2CID   11638898.
  15. Chakrabarti, B.; Bullmore, E. & Baron-Cohen, S. (2006). "Empathizing with basic emotions: Common and discrete neural substrates". Social Neuroscience. 1 (3&4): 364–384. doi:10.1080/17470910601041317. PMID   18633800. S2CID   18612627.
  16. Cheng, Y.; Yang, C.Y.; Lin, C.P.; Lee, P.R. & Decety, J. (2008). "The perception of pain in others suppresses somatosensory oscillations: a magnetoencephalography study". NeuroImage. 40 (4): 1833–1840. doi:10.1016/j.neuroimage.2008.01.064. PMID   18353686. S2CID   1827514.
  17. Batson, C. D (1991). "The Altruism Question: Toward a Social-Psychological Answer".{{cite journal}}: Cite journal requires |journal= (help)
    • Batson, C. D.; Gilbert, D. T.; Fiske, S. T.; Lindzey, G. (1998). The handbook of social psychology.