Small Dark Spot

Last updated

Great Dark Spot (top), Scooter (middle white cloud), and Small Dark Spot (bottom). Neptune storms.jpg
Great Dark Spot (top), Scooter (middle white cloud), and Small Dark Spot (bottom).
A high-resolution view of the Small Dark Spot PIA00064 Neptune's Dark Spot (D2), 1989.jpg
A high-resolution view of the Small Dark Spot

The Small Dark Spot, sometimes also called Dark Spot 2 or The Wizard's Eye, was an extraterrestrial vortex on the planet Neptune. [1] [2] It was the second largest southern cyclonic storm on the planet in 1989, when Voyager 2 flew by the planet. When the Hubble Space Telescope observed Neptune in 1994, the storm had disappeared. [3]

Contents

Observation history

The Small Dark Spot was discovered in 1989 by the Voyager 2 spacecraft along with the Great Dark Spot and Scooter (a bright fast moving cloud located between the two giant storms). The Small Dark Spot was found at a latitude of 54° South while rotating East around Neptune with a period of 16.1 hours. [4] Unlike the Great Dark Spot (which has some of the highest measured wind speeds in the Solar System), wind speed data was not taken for the Small Dark Spot. [5] The spot was also observed without any white "companion clouds" present around its edges, again in contrast to the Great Dark Spot. When NASA pointed the Hubble Space Telescope toward Neptune in 1994, both giant spots were no longer present. [3]

Physical characteristics

The nickname "Wizard's Eye" given to this storm comes from its distinct features which create a striking eye-like appearance. [6] Overall the Small Dark Spot is significantly smaller but on the same order of magnitude as the Great Dark Spot and rotates about 30° further south and with a period about 2 hours shorter than the larger storm. [4]

The dark oval of this storm which created the overall outline for the eye-like shape was formed by a clockwise rotating vortex which sucked atmosphere inward toward the planet center. [5] This action of pulling atmosphere downward created a hole in the upper methane cloud deck of Neptune and gave the storm its darker blue tone. [7] Also present within the dark region of the storm were sharp band-lines potentially indicating unseen high winds, despite exact measurements having never been taken. [5]

The bright central region representing the pupil of the eye-like shape was formed by white methane-ice clouds upwelling from the center of the storm. [6] Within the chaos of these central clouds are some larger structures, including a distinct V-shape on the East side of the storm indicating the storm's believed clockwise rotation. [5] These clouds are composed of the same methane-ice that forms similar clouds called "companion clouds" present near the edges of other large storms on the planet; however, the Small Dark Spot did not have any of these companion clouds apparent in its 1989 observation. Additionally, no companion clouds were observed in the region of the spot in the 1994 observation of the planet. [3]

Disappearance

After being observed by Voyager 2 in 1989, the planet would not be observed in high resolution again until the Hubble Space Telescope turned its view to it in 1994. In 1994 and subsequent observations, both major storms had apparently vanished. The storm causing the Great Dark Spot; however, may have continued at a lower altitude as evidenced by the persistence of the storm's companion clouds. [8] The Small Dark Spot did not have any companion clouds by which to judge survival of the storm causing the spot. While a conjectured mechanism for decay and death of large vortexes on Neptune is their approach to the equator where the planet has 400 meter per second jet streams, this storm (as well as others) could have also decayed from unexplained mechanisms of Neptune's atmosphere. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Naiad (moon)</span> Moon of Neptune

Naiad, named after the naiads of Greek legend, is the innermost satellite of Neptune and the nearest to the center of any gas giant with moons with a distance of 48,224 km from the planet's center. Its orbital period is less than a Neptunian day, resulting in tidal dissipation that will cause its orbit to decay. Eventually it will either crash into Neptune's atmosphere or break up to become a new ring.

<span class="mw-page-title-main">Space exploration</span> Exploration of space, planets, and moons

Space exploration is the use of astronomy and space technology to explore outer space. While the exploration of space is carried out mainly by astronomers with telescopes, its physical exploration is conducted both by uncrewed robotic space probes and human spaceflight. Space exploration, like its classical form astronomy, is one of the main sources for space science.

<i>Voyager 2</i> NASA "grand tour" planetary probe

Voyager 2 is a space probe launched by NASA on August 20, 1977, to study the outer planets and interstellar space beyond the Sun's heliosphere. As a part of the Voyager program, it was launched 16 days before its twin, Voyager 1, on a trajectory that took longer to reach gas giants Jupiter and Saturn but enabled further encounters with ice giants Uranus and Neptune. Voyager 2 remains the only spacecraft to have visited either of the ice giant planets. Voyager 2 was the third of five spacecraft to achieve Solar escape velocity, which allowed it to leave the Solar System.

<span class="mw-page-title-main">Weather</span> Short-term state of the atmosphere

Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloudy. On Earth, most weather phenomena occur in the lowest layer of the planet's atmosphere, the troposphere, just below the stratosphere. Weather refers to day-to-day temperature, precipitation, and other atmospheric conditions, whereas climate is the term for the averaging of atmospheric conditions over longer periods of time. When used without qualification, "weather" is generally understood to mean the weather of Earth.

<span class="mw-page-title-main">Saturn</span> Sixth planet from the Sun

Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth, but is over 95 times more massive.

<span class="mw-page-title-main">Uranus</span> Seventh planet from the Sun

Uranus is the seventh planet from the Sun and is a gaseous cyan ice giant. Most of the planet is made out of water, ammonia, and methane in a supercritical phase of matter, which in astronomy is called 'ice' or volatiles. The planet's atmosphere has a complex layered cloud structure and has the lowest minimum temperature of 49 K out of all Solar System's planets. It has a marked axial tilt of 97.8° with a retrograde rotation rate of 17 hours. This means that in an 84 Earth years orbital period around the Sun, its poles get around 42 years of continuous sunlight, followed by 42 years of continuous darkness.

<span class="mw-page-title-main">Great Red Spot</span> Persistent storm in Jupiters atmosphere

The Great Red Spot is a persistent high-pressure region in the atmosphere of Jupiter, producing an anticyclonic storm that is the largest in the Solar System. It is the most recognizable feature on Jupiter, owing to its red-orange color whose origin is still unknown. Located 22 degrees south of Jupiter's equator, it produces wind-speeds up to 432 km/h (268 mph). Observations from 1665 to 1713 are believed to be of the same storm; if this is correct, it has existed for at least 358 years. It was next observed in September 1831, with 60 recorded observations between then and 1878, when continuous observations began.

<span class="mw-page-title-main">Great Dark Spot</span> Large storm in Neptunes atmosphere

The Great Dark Spot was one of a series of dark spots on Neptune similar in appearance to Jupiter's Great Red Spot. In 1989, GDS-89 was the first Great Dark Spot on Neptune to be observed by NASA's Voyager 2 space probe. Like Jupiter's spot, Great Dark Spots are anticyclonic storms. However, their interiors are relatively cloud-free, and unlike Jupiter's spot, which has lasted for hundreds of years, their lifetimes appear to be shorter, forming and dissipating once every few years or so. Based on observations taken with Voyager 2 and since then with the Hubble Space Telescope, Neptune appears to spend somewhat more than half its time with a Great Dark Spot. Little is known about the origins, movement, and disappearance of the dark spots observed on the planet since 1989.

<span class="mw-page-title-main">Anticyclonic storm</span> Type of storm

An anticyclonic storm is a storm with a high-pressure center, in which winds flow in the direction opposite to that of the flow above a region of low pressure. These storms can create powerful mesoanticylonic supercell storms that can generate anticyclonic tornadoes. Examples include the anticyclonic blizzard of 2018, Hartmut, Jupiter, and Neptune's anticyclonic cloud system.

<span class="mw-page-title-main">Great White Spot</span> Periodic storms on Saturn

The Great White Spot, also known as Great White Oval, on Saturn, named by analogy to Jupiter's Great Red Spot, are periodic storms that are large enough to be visible from Earth by telescope by their characteristic white appearance. The spots can be several thousands of kilometers wide.

An extraterrestrial vortex is a vortex that occurs on planets and natural satellites other than Earth that have sufficient atmospheres. Most observed extraterrestrial vortices have been seen in large cyclones, or anticyclones. However, occasional dust storms have been known to produce vortices on Mars and Titan. Various spacecraft missions have recorded evidence of past and present extraterrestrial vortices. The largest extraterrestrial vortices are found on the gas giants, Jupiter and Saturn, and the ice giants, Uranus and Neptune.

<span class="mw-page-title-main">Extraterrestrial atmosphere</span> Area of astronomical research

The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the gas giants, as well as Mars, Venus and Titan. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.

<span class="mw-page-title-main">Exploration of Neptune</span> Overview of the exploration of Neptune

Neptune has been directly explored by one space probe, Voyager 2, in 1989. As of December 2022, there are no confirmed future missions to visit the Neptunian system, although a tentative Chinese mission has been planned for launch in 2024. NASA, ESA, and independent academic groups have proposed future scientific missions to visit Neptune. Some mission plans are still active, while others have been abandoned or put on hold.

<span class="mw-page-title-main">Atmosphere of Uranus</span> Layer of gases surrounding the planet Uranus

The atmosphere of Uranus is composed primarily of hydrogen and helium. At depth it is significantly enriched in volatiles such as water, ammonia and methane. The opposite is true for the upper atmosphere, which contains very few gases heavier than hydrogen and helium due to its low temperature. Uranus's atmosphere is the coldest of all the planets, with its temperature reaching as low as 49 K.

<span class="mw-page-title-main">Heidi Hammel</span> Planetary astronomer

Heidi B. Hammel is a planetary astronomer who has extensively studied Neptune and Uranus. She was part of the team imaging Neptune from Voyager 2 in 1989. She led the team using the Hubble Space Telescope to view Shoemaker-Levy 9's impact with Jupiter in 1994. She has used the Hubble Space Telescope and the Keck Telescope to study Uranus and Neptune, discovering new information about dark spots, planetary storms and Uranus' rings. In 2002, she was selected as an interdisciplinary scientist for the James Webb Space Telescope.

<span class="mw-page-title-main">Climate of Uranus</span>

The climate of Uranus is heavily influenced by both its lack of internal heat, which limits atmospheric activity, and by its extreme axial tilt, which induces intense seasonal variation. Uranus' atmosphere is remarkably bland in comparison to the other giant planets which it otherwise closely resembles. When Voyager 2 flew by Uranus in 1986, it observed a total of ten cloud features across the entire planet. Later observations from the ground or by the Hubble Space Telescope made in the 1990s and the 2000s revealed bright clouds in the northern (winter) hemisphere. In 2006 a dark spot similar to the Great Dark Spot on Neptune was detected.

<span class="mw-page-title-main">Neptune</span> Eighth planet from the Sun

Neptune is the eighth planet from the Sun and the farthest IAU-recognized planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than its near-twin Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface. The planet orbits the Sun once every 164.8 years at an average distance of 30.1 astronomical units. It is named after the Roman god of the sea and has the astronomical symbol , representing Neptune's trident.

<span class="mw-page-title-main">Atmosphere of Jupiter</span> Layer of gases surrounding the planet Jupiter

The atmosphere of Jupiter is the largest planetary atmosphere in the Solar System. It is mostly made of molecular hydrogen and helium in roughly solar proportions; other chemical compounds are present only in small amounts and include methane, ammonia, hydrogen sulfide, and water. Although water is thought to reside deep in the atmosphere, its directly measured concentration is very low. The nitrogen, sulfur, and noble gas abundances in Jupiter's atmosphere exceed solar values by a factor of about three.

<span class="mw-page-title-main">Saturn's hexagon</span> Hexagonal cloud pattern around north pole of Saturn

Saturn's hexagon is a persistent approximately hexagonal cloud pattern around the north pole of the planet Saturn, located at about 78°N. The sides of the hexagon are about 14,500 km (9,000 mi) long, which is about 2,000 km (1,200 mi) longer than the diameter of Earth. The hexagon may be a bit more than 29,000 km (18,000 mi) wide, may be 300 km (190 mi) high, and may be a jet stream made of atmospheric gases moving at 320 km/h (200 mph). It rotates with a period of 10h 39m 24s, the same period as Saturn's radio emissions from its interior. The hexagon does not shift in longitude like other clouds in the visible atmosphere.

<span class="mw-page-title-main">Amy Simon</span> American planetary scientist

Amy Simon is an American planetary scientist at NASA's Goddard Space Flight Center, involved in several missions of the Solar System Exploration Program.

References

  1. "Historic Hurricanes". Solar System Exploration. NASA. Archived from the original on June 14, 2011. Retrieved August 9, 2012.
  2. "Small Dark Spot". NASA. Retrieved August 9, 2012.
  3. 1 2 3 Nemiroff, R.; Bonnell, J., eds. (August 21, 2001). "Dark Spots on Neptune". Astronomy Picture of the Day . NASA . Retrieved August 9, 2012.
  4. 1 2 "PIA00046: Neptune Full Disk". Jet Propulsion Laboratory Photojournal. January 29, 1996. Retrieved April 23, 2020.
  5. 1 2 3 4 "Neptune's Small Dark Spot (D2)". www.jpl.nasa.gov. Retrieved April 23, 2020.
  6. 1 2 3 "NASA's Cosmos". ase.tufts.edu. Retrieved April 23, 2020.
  7. Suomi, V. E.; Limaye, S. S.; Johnson, D. R. (February 22, 1991). "High Winds of Neptune: A Possible Mechanism". Science. 251 (4996): 929–932. Bibcode:1991Sci...251..929S. doi:10.1126/science.251.4996.929. ISSN   0036-8075. PMID   17847386. S2CID   46419483.
  8. Sromovsky, L. A.; Fry, P. M.; Dowling, T. E.; Baines, K. H. (October 1, 2000). "The unusual dynamics of new dark spots on Neptune". DPS. 32: 09.03. Bibcode:2000DPS....32.0903S.

Further reading