Soboleva modified hyperbolic tangent

Last updated

The Soboleva modified hyperbolic tangent, also known as (parametric) Soboleva modified hyperbolic tangent activation function ([P]SMHTAF), [nb 1] is a special S-shaped function based on the hyperbolic tangent, given by

Contents

EquationLeft tail controlRight tail control
SMHTAF 01.png
SMHTAF 02.png

History

This function was originally proposed as "modified hyperbolic tangent" [nb 1] by Ukrainian scientist Elena V. Soboleva (Елена В. Соболева) as a utility function for multi-objective optimization and choice modelling in decision-making. [1] [2] [3]

Practical usage

The function has since been introduced into neural network theory and practice. [4]

It was also used in economics for modelling consumption and investment, [5] to approximate current-voltage characteristics of field-effect transistors and light-emitting diodes, [6] to design antenna feeders, [7] [ predatory publisher ] and analyze plasma temperatures and densities in the divertor region of fusion reactors. [8]

Sensitivity to parameters

Derivative of the function is defined by the formula:

The following conditions are keeping the function limited on y-axes: ac, bd.

A family of recurrence-generated parametric Soboleva modified hyperbolic tangent activation functions (NPSMHTAF, FPSMHTAF) was studied with parameters a = c and b = d. [9] It is worth noting that in this case, the function is not sensitive to flipping the left and right-sides parameters:

EquationLeft prevalenceRight prevalence
SMHTAF 03a.png
SMHTAF 03b.png

The function is sensitive to ratio of the denominator coefficients and often is used without coefficients in the numerator:

EquationBasic chartScaled function

Extremum estimates:

SMHTAF 04a.png
SMHTAF 04b.png

With parameters a = b = c = d = 1 the modified hyperbolic tangent function reduces to the conventional tanh(x) function, whereas for a = b = 1 and c = d = 0, the term becomes equal to sinh(x).

See also

Notes

  1. 1 2 Soboleva proposed the name "modified hyperbolic tangent" (mtanh, mth), but since other authors used this name also for other functions, some authors have started to refer to this function as "Soboleva modified hyperbolic tangent".

Related Research Articles

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Logistic function</span> S-shaped curve

A logistic function or logistic curve is a common S-shaped curve with the equation

<span class="mw-page-title-main">Sigmoid function</span> Mathematical function having a characteristic S-shaped curve or sigmoid curve

A sigmoid function refers specifically to a function whose graph follows the logistic function. It is defined by the formula:

<span class="mw-page-title-main">Cubic function</span> Polynomial function of degree 3

In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficientsa, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.

In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using only the basic operations of addition, subtraction, multiplication, and division. This is in contrast to an algebraic function.

In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology.

In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geometry was cultivated by Felix Klein in his Erlangen program. The idea of reducing geometry to its characteristic group was developed particularly by Mario Pieri in his reduction of the primitive notions of geometry to merely point and motion.

<span class="mw-page-title-main">Hyperbolic secant distribution</span> Continuous probability distribution

In probability theory and statistics, the hyperbolic secant distribution is a continuous probability distribution whose probability density function and characteristic function are proportional to the hyperbolic secant function. The hyperbolic secant function is equivalent to the reciprocal hyperbolic cosine, and thus this distribution is also called the inverse-cosh distribution.

The International Mathematics Competition (IMC) for University Students is an annual mathematics competition open to all undergraduate students of mathematics. Participating students are expected to be at most twenty three years of age at the time of the IMC. The IMC is primarily a competition for individuals, although most participating universities select and send one or more teams of students. The working language is English.

<span class="mw-page-title-main">Inverse hyperbolic functions</span> Mathematical functions

In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar-.

<span class="mw-page-title-main">Plovdiv University "Paisii Hilendarski"</span> Public university in Plovdiv, Bulgaria

The University of Plovdiv "Paisii Hilendarski", also known as The Paisii Hilendarski University of Plovdiv, is a university located in Plovdiv, Bulgaria. It was founded in 1962 and has nine faculties.

<span class="mw-page-title-main">Beltrami–Klein model</span> Model of hyperbolic geometry

In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.

<span class="mw-page-title-main">Hilmi İbar</span> Chemist, Pedagogue

Hilmi İbar is professor of chemistry, former dean of the pedagogic faculty and former head of the International Office at the Trakya University in Edirne. He is also vice president of the Balkan Universities Network.

<span class="mw-page-title-main">Rectifier (neural networks)</span> Activation function

In the context of artificial neural networks, the rectifier or ReLU activation function is an activation function defined as the non-negative part of its argument:

Dink is a village in Southern Bulgaria, Maritsa Municipality, Plovdiv Province. As of 15 June 2020, the village has a population of 909.

References

  1. Soboleva, Elena Vladimirovna; Beskorovainyi, Vladimir Valentinovich (2008). The utility function in problems of structural optimization of distributed objectsФункция для оценки полезности альтернатив в задачах структурной оптимизации территориально распределенных объектов. Четверта наукова конференція Харківського університету Повітряних Сил імені Івана Кожедуба, 16–17 квітня 2008 (The fourth scientific conference of the Ivan Kozhedub Kharkiv University of Air Forces, 16–17 April 2008) (in Russian). Kharkiv, Ukraine: Kharkiv University of Air Force (HUPS/ХУПС). p. 121.
  2. Soboleva, Elena Vladimirovna (2009). S-образная функция полезности част-ных критериев для многофакторной оценки проектных решений[The S-shaped utility function of individual criteria for multi-objective decision-making in design]. Материалы XIII Международного молодежного форума «Радиоэлектро-ника и молодежь в XXI веке» (Materials of the 13th international youth forum "Radioelectronics and youth in the 21st century") (in Russian). Kharkiv, Ukraine: Kharkiv National University of Radioelectronics (KNURE/ХНУРЕ). p. 247.
  3. Beskorovainyi, Vladimir Valentinovich; Soboleva, Elena Vladimirovna (2010). ИДЕНТИФИКАЦИЯ ЧАСТНОй ПОлЕЗНОСТИ МНОГОФАКТОРНЫХ АлЬТЕРНАТИВ С ПОМОЩЬЮ S-ОБРАЗНЫХ ФУНКЦИй [Identification of utility functions in multi-objective choice modelling by using S-shaped functions](PDF). Problemy Bioniki: Respublikanskij Mežvedomstvennyj Naučno-Techničeskij SbornikБИОНИКА ИНТЕЛЛЕКТА[Bionics of Intelligence] (in Russian). Vol. 72, no. 1. Kharkiv National University of Radioelectronics (KNURE/ХНУРЕ). pp. 50–54. ISSN   0555-2656. UDK 519.688: 004.896. Archived (PDF) from the original on 2022-06-21. Retrieved 2020-06-19. (5 pages)
  4. Malinova, Anna; Golev, Angel; Iliev, Anton; Kyurkchiev, Nikolay (August 2017). "A Family Of Recurrence Generating Activation Functions Based On Gudermann Function" (PDF). International Journal of Engineering Researches and Management Studies. 4 (8). Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria: 38–48. ISSN   2394-7659. Archived (PDF) from the original on 2022-07-14. Retrieved 2020-06-19. (11 pages)
  5. Orlando, Giuseppe (2016-07-01). "A discrete mathematical model for chaotic dynamics in economics: Kaldor's model on business cycle". Mathematics and Computers in Simulation. 8th Workshop STRUCTURAL DYNAMICAL SYSTEMS: Computational Aspects; Edited by Nicoletta Del Buono, Roberto Garrappa and Giulia Spaletta and Nonstandard Applications of Computer Algebra (ACA’2013); Edited by Francisco Botana, Antonio Hernando, Eugenio Roanes-Lozano and Michael J. Wester. 125: 83–98. doi:10.1016/j.matcom.2016.01.001. ISSN   0378-4754.
  6. Tuev, Vasily I.; Uzhanin, Maxim V. (2009). ПРИМЕНЕНИЕ МОДИФИЦИРОВАННОЙ ФУНКЦИИ ГИПЕРБОЛИЧЕСКОГО ТАНГЕНСА ДЛЯ АППРОКСИМАЦИИ ВОЛЬТАМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛЕВЫХ ТРАНЗИСТОРОВ [Using modified hyperbolic tangent function to approximate the current-voltage characteristics of field-effect transistors] (in Russian). Tomsk, Russia: Tomsk Politehnic University (TPU/ТПУ). pp. 135–138. No. 4/314. Archived from the original on 2017-08-15. Retrieved 2015-11-05. (4 pages)
  7. Golev, Angel; Djamiykov, Todor; Kyurkchiev, Nikolay (2017-11-23) [2017-10-09, 2017-08-19]. "Sigmoidal Functions In Antenna-Feeder Technique" (PDF). International Journal of Pure and Applied Mathematics. 116 (4). Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria / Technical University of Sofia, Sofia, Bulgaria: Academic Publications, Ltd.: 1081–1092. doi:10.12732/ijpam.v116i4.23 (inactive 2024-11-01). ISSN   1311-8080. Archived (PDF) from the original on 2020-06-19. Retrieved 2020-06-19.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link) (12 pages)
  8. Rubino, Giulio (2018-01-15) [2018-01-14]. Power Exhaust Data Analysis and Modeling Of Advanced Divertor Configuration (Thesis). Joint Research Doctorate In Fusion Science And Engineering Cycle XXX (in English, Italian, and Portuguese). Padova, Italy: Centro Ricerche Fusione (CRF), Università degli Studi di Padova / Università degli Studi di Napoli Federico II / Instituto Superior Técnico (IST), Universidade de Lisboa. p. 84. ID 10811. Archived from the original on 2020-06-19. Retrieved 2020-06-19.{{cite book}}: CS1 maint: bot: original URL status unknown (link) (2+viii+3*iii+102 pages)
  9. Golev, Angel; Iliev, Anton; Kyurkchiev, Nikolay (June 2017). "A Note on the Soboleva' Modified Hyperbolic Tangent Activation Function" (PDF). International Journal of Innovative Science, Engineering & Technology (JISET). 4 (6). Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria: 177–182. ISSN   2348-7968. Archived (PDF) from the original on 2020-06-19. Retrieved 2020-06-19. (6 pages)

Further reading