Sodium MRI

Last updated

Sodium MRI (also known as 23 Na-MRI) is a specialised magnetic resonance imaging technique that uses strong magnetic fields, magnetic field gradients, and radio waves to generate images of the distribution of sodium in the body, as opposed to more common forms of MRI that utilise protons (or hydrogen) present in water (1H-MRI). [1] [2] Like the proton, sodium is naturally abundant in the body, so can be imaged directly without the need for contrast agents or hyperpolarization. Furthermore, sodium ions play a role in important biological processes via their contribution to concentration and electrochemical gradients across cellular membranes, making it of interest as an imaging target in health and disease. [3]

Contents

In contrast to conventional MRI of the proton, Sodium MRI is complicated by the low concentrations of Na nuclei relative to concentration of H2O molecules in biological tissues [4] (10-45 mM) and the lower gyromagnetic ratio of the 23Na nucleus as compared to a 1H nucleus,. [5] [6] This causes low NMR sensitivity and the requirement for a stronger magnetic field for equivalent spatial resolution. The quadrupolar 23Na nucleus also has a faster transverse relaxation rates and multiple quantum coherences as compared to the 1H nucleus, [6] requiring specialized and high performance MRI sequences to capture information before the contrast used to image the body is lost.

Biological significance

Effects of hypoxic tumor microenvironment on intracellular pH Tumor Hypoxia and Intracellular pH.png
Effects of hypoxic tumor microenvironment on intracellular pH

Tissue sodium concentration (TSC) is tightly regulated by healthy cells and are altered by energy status and cellular integrity, making it an effective marker for disease states. [4] [6] [7] Cells maintain a low intracellular Na+ concentration by actively pumping Na ions out via the Na+/K+ ATPase channel, and any challenge to the cell's metabolism causing low ATP supply or compromise of the cell's membrane integrity will drastically increase intracellular Na+ concentrations. After exhaustive exercise, for example, 23Na MRI can detect Na+ levels in tissues rising sharply, and can even visualize a sodium-rich meal in a patient's stomach. Malignant tumors in particular alter their metabolism drastically, often to account for hypoxic intratumor conditions, leading to an decrease in cytosolic pH. To compensate, Na+ ions from the extracellular space are exchanged for protons in the Na+/H+ antiport, [6] the loss of which often attenuates cancer growth. [8] Therefore, 23Na MRI is a useful clinical tool for detecting a number of disease states, including heart disease [9] and cancer, as well as monitoring therapy. For example, 23Na MRI has been shown to measure cellularity in ovarian cancer. [10] Tissue damage in stroke patients can also be evaluated using 23Na MRI, with one study showing that a change of 50% higher TSC than the TSC in healthy brain tissue is consistent with complete infarction, [11] and therefore can be used to determine tissue viability and treatment options for the patient. Tumor malignancy can also be evaluated based on the increases in TSC of rapidly proliferating cells. Malignant tumors have approximately 50-60% increased TSC relative to that of healthy tissues [11] – however, increases in TSC cannot be determined to be due to changes in extracellular volume, intracellular sodium content or neovascularization. Another interesting use of 23Na MRI is in evaluating multiple sclerosis, wherein accumulation of sodium in axons can lead to axon degeneration. [12] Preliminary studies have shown that there is a positive correlation between elevated TSC and disability.

Uses in Prostate Cancer

Recently, work has been undertaken to assess the utility of using sodium-MRI to characterize prostate cancer lesions in men. [13] In this study, patients were imaged with sodium MRI prior to surgical removal of the prostate. TSC was extracted from the images and compared to the Gleason score of imaged lesions. This work showed statistically significant increases in TSC as prostate cancer increased in aggression. This preliminary study suggests that sodium MRI can accurately characterize the stage of prostate cancer. This suggests the potential use of sodium-MRI to better management and stage patients with prostate cancer into treatment schemes.

Advantages

23Na MRI measures cellular metabolic rate as well as disease-related change in tissues and organs. [14] It had improved from 45min length to only 15 mins at 1.5T. [6] [11] Unlike other MRI scanning, sodium MRI captures only sodium signals inside bodies. For cartilage degeneration, proteoglycan degrades with negative charge, and positively charged sodium ion bond with proteoglycan. [2] Both proteoglycan and sodium level decrease, so less signals are observed by sodium MRI. 23Na MRI is very sensitive and specific to change in proteoglycan, so it is good to use for monitoring of proteoglycan degeneration in cartilage. [2] [15]

Related Research Articles

<span class="mw-page-title-main">Magnetic resonance imaging</span> Medical imaging technique

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from computed tomography (CT) and positron emission tomography (PET) scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy.

Graham Wiggins was an American musician and scientist. He played the didgeridoo, keyboards, melodica, sampler, and various percussion instruments with his groups, the Oxford-based Outback and Dr. Didg. He also developed new technologies for magnetic resonance imaging (MRI).

<span class="mw-page-title-main">Diffusion MRI</span> Method of utilizing water in magnetic resonance imaging

Diffusion-weighted magnetic resonance imaging is the use of specific MRI sequences as well as software that generates images from the resulting data that uses the diffusion of water molecules to generate contrast in MR images. It allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. Molecular diffusion in tissues is not random, but reflects interactions with many obstacles, such as macromolecules, fibers, and membranes. Water molecule diffusion patterns can therefore reveal microscopic details about tissue architecture, either normal or in a diseased state. A special kind of DWI, diffusion tensor imaging (DTI), has been used extensively to map white matter tractography in the brain.

<span class="mw-page-title-main">Prostate biopsy</span>

Prostate biopsy is a procedure in which small hollow needle-core samples are removed from a man's prostate gland to be examined for the presence of prostate cancer. It is typically performed when the result from a PSA blood test is high. It may also be considered advisable after a digital rectal exam (DRE) finds possible abnormality. PSA screening is controversial as PSA may become elevated due to non-cancerous conditions such as benign prostatic hyperplasia (BPH), by infection, or by manipulation of the prostate during surgery or catheterization. Additionally many prostate cancers detected by screening develop so slowly that they would not cause problems during a man's lifetime, making the complications due to treatment unnecessary.

<span class="mw-page-title-main">Focused ultrasound</span> Non-invasive therapeutic technique

High-intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that uses non-ionizing ultrasonic waves to heat or ablate tissue. HIFU can be used to increase the flow of blood or lymph or to destroy tissue, such as tumors, via thermal and mechanical mechanisms. Given the prevalence and relatively low cost of ultrasound generation mechanisms, The premise of HIFU is that it is expect a non-invasive and low-cost therapy that can at minimum outperform operating room care.

<span class="mw-page-title-main">Gadopentetic acid</span> Complex of gadolinium by DTPA

Gadopentetic acid, sold under the brand name Magnevist, is a gadolinium-based MRI contrast agent.

Magnetic resonance elastography (MRE) is a form of elastography that specifically leverages MRI to quantify and subsequently map the mechanical properties of soft tissue. First developed and described at Mayo Clinic by Muthupillai et al. in 1995, MRE has emerged as a powerful, non-invasive diagnostic tool, namely as an alternative to biopsy and serum tests for staging liver fibrosis.

During nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.

MRI contrast agents are contrast agents used to improve the visibility of internal body structures in magnetic resonance imaging (MRI). The most commonly used compounds for contrast enhancement are gadolinium-based contrast agents (GBCAs). Such MRI contrast agents shorten the relaxation times of nuclei within body tissues following oral or intravenous administration.

In vivo magnetic resonance spectroscopy (MRS) is a specialized technique associated with magnetic resonance imaging (MRI).

Signal enhancement by extravascular water protons, or SEEP, is a contrast mechanism for functional magnetic resonance imaging (fMRI), which is an alternative to the more commonly employed BOLD contrast. This mechanism for image contrast changes corresponding to changes in neuronal activity was first proposed by Dr. Patrick Stroman in 2001. SEEP contrast is based on changes in tissue water content which arise from the increased production of extracellular fluid and swelling of neurons and glial cells at sites of neuronal activity. Because the dominant sources of MRI signal in biological tissues are water and lipids, an increase in tissue water content is reflected by a local increase in MR signal intensity. A correspondence between BOLD and SEEP signal changes, and sites of activity, has been observed in the brain and appears to arise from the common dependence on changes in local blood flow to cause a change in blood oxygenation or to produce extracellular fluid. The advantage of SEEP contrast is that it can be detected with MR imaging methods which are relatively insensitive to magnetic susceptibility differences between air, tissues, blood, and bone. Such susceptibility differences can give rise to spatial image distortions and areas of low signal, and magnetic susceptibility changes in blood give rise to the BOLD contrast for fMRI. The primary application of SEEP to date has been fMRI of the spinal cord because the bone/tissue interfaces around the spinal cord cause poor image quality with conventional fMRI methods. The disadvantages of SEEP compared to BOLD contrast are that it reveals more localized areas of activity, and in the brain the signal intensity changes are typically lower, and it can therefore be more difficult to detect.

<span class="mw-page-title-main">Magnetic resonance neurography</span>

Magnetic resonance neurography (MRN) is the direct imaging of nerves in the body by optimizing selectivity for unique MRI water properties of nerves. It is a modification of magnetic resonance imaging. This technique yields a detailed image of a nerve from the resonance signal that arises from in the nerve itself rather than from surrounding tissues or from fat in the nerve lining. Because of the intraneural source of the image signal, the image provides a medically useful set of information about the internal state of the nerve such as the presence of irritation, nerve swelling (edema), compression, pinch or injury. Standard magnetic resonance images can show the outline of some nerves in portions of their courses but do not show the intrinsic signal from nerve water. Magnetic resonance neurography is used to evaluate major nerve compressions such as those affecting the sciatic nerve (e.g. piriformis syndrome), the brachial plexus nerves (e.g. thoracic outlet syndrome), the pudendal nerve, or virtually any named nerve in the body. A related technique for imaging neural tracts in the brain and spinal cord is called magnetic resonance tractography or diffusion tensor imaging.

Preclinical imaging is the visualization of living animals for research purposes, such as drug development. Imaging modalities have long been crucial to the researcher in observing changes, either at the organ, tissue, cell, or molecular level, in animals responding to physiological or environmental changes. Imaging modalities that are non-invasive and in vivo have become especially important to study animal models longitudinally. Broadly speaking, these imaging systems can be categorized into primarily morphological/anatomical and primarily molecular imaging techniques. Techniques such as high-frequency micro-ultrasound, magnetic resonance imaging (MRI) and computed tomography (CT) are usually used for anatomical imaging, while optical imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) are usually used for molecular visualizations.

<span class="mw-page-title-main">Delayed gadolinium-enhanced magnetic resonance imaging of cartilage</span>

Delayed gadolinium-enhanced magnetic resonance imaging of cartilage or dGEMRIC measures the fixed-charge density and relative proteoglycan content of articular cartilage using the spin-lattice relaxation time or T1 relaxation time. Current research is investigating the clinical application of dGEMRIC as a quantitative tool for monitoring cartilage function in diseased or repair cartilage.

<span class="mw-page-title-main">Magnetic resonance imaging of the brain</span>

Magnetic resonance imaging of the brain uses magnetic resonance imaging (MRI) to produce high quality two-dimensional or three-dimensional images of the brain and brainstem as well as the cerebellum without the use of ionizing radiation (X-rays) or radioactive tracers.

Functional magnetic resonance spectroscopy of the brain (fMRS) uses magnetic resonance imaging (MRI) to study brain metabolism during brain activation. The data generated by fMRS usually shows spectra of resonances, instead of a brain image, as with MRI. The area under peaks in the spectrum represents relative concentrations of metabolites.

<span class="mw-page-title-main">Perfusion MRI</span>

Perfusion MRI or perfusion-weighted imaging (PWI) is perfusion scanning by the use of a particular MRI sequence. The acquired data are then post-processed to obtain perfusion maps with different parameters, such as BV, BF, MTT and TTP.

The history of magnetic resonance imaging (MRI) includes the work of many researchers who contributed to the discovery of nuclear magnetic resonance (NMR) and described the underlying physics of magnetic resonance imaging, starting early in the twentieth century. MR imaging was invented by Paul C. Lauterbur who developed a mechanism to encode spatial information into an NMR signal using magnetic field gradients in September 1971; he published the theory behind it in March 1973.

<span class="mw-page-title-main">MRI sequence</span>

An MRI sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance.

Michael Albert Thomas is an Indian-American physicist, academic, and clinical researcher. He is a Professor-in-Residence of Radiological Sciences, and Psychiatry at the Geffen School of Medicine, University of California, Los Angeles (UCLA). He is most known for developing novel single voxel based 2D NMR techniques, multi-voxel 2D MRS techniques using hybrid Cartesian as well as non-Cartesian spatio-temporal encoding such as concentric ring, radial and rosette trajectories.

References

  1. Ouwerkerk, Ronald; Morgan, Russell H. (2007-10-01). "23Na MRI: From Research to Clinical Use". Journal of the American College of Radiology. 4 (10): 739–741. doi:10.1016/j.jacr.2007.07.001. ISSN   1546-1440. PMC   2084082 . PMID   17903762.
  2. 1 2 3 Borthakur, A; Shapiro, E. M; Beers, J; Kudchodkar, S; Kneeland, J. B; Reddy, R (2000-07-01). "Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI". Osteoarthritis and Cartilage. 8 (4): 288–293. doi: 10.1053/joca.1999.0303 . PMID   10903883.
  3. Madelin, Guillaume (2012-12-18). "Sodium Magnetic Resonance Imaging: Biomedical Applications". arXiv: 1212.4400 [physics.med-ph].
  4. 1 2 Romanzetti, Sandro; Mirkes, Christian C.; Fiege, Daniel P.; Celik, Avdo; Felder, Jörg; Shah, N. Jon (2014-08-01). "Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4Tesla". NeuroImage. 96: 44–53. doi:10.1016/j.neuroimage.2014.03.079. ISSN   1095-9572. PMID   24721332. S2CID   17913668.
  5. Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej (2014-05-01). "Sodium MRI: Methods and applications". Progress in Nuclear Magnetic Resonance Spectroscopy. 79: 14–47. doi:10.1016/j.pnmrs.2014.02.001. PMC   4126172 . PMID   24815363.
  6. 1 2 3 4 5 Madelin, Guillaume; Regatte, Ravinder R. (2013-09-01). "Biomedical Applications of Sodium MRI In Vivo". Journal of Magnetic Resonance Imaging. 38 (3): 511–529. doi:10.1002/jmri.24168. ISSN   1053-1807. PMC   3759542 . PMID   23722972.
  7. Ouwerkerk, Ronald (2011-01-01). "Sodium MRI". In Modo, Michel; Bulte, Jeff W.M. (eds.). Magnetic Resonance Neuroimaging. Methods in Molecular Biology. Vol. 711. Humana Press. pp. 175–201. doi:10.1007/978-1-61737-992-5_8. ISBN   9781617379918. PMID   21279602.
  8. Alevizopoulos, Konstantinos; Calogeropoulou, Theodora; Lang, Florian; Stournaras, Christos (2014-01-01). "Na+/K+ ATPase inhibitors in cancer". Current Drug Targets. 15 (10): 988–1000. ISSN   1873-5592. PMID   25198786.
  9. Bottomley, Paul A. (2016-02-01). "Sodium MRI in human heart: a review". NMR in Biomedicine . 29 (2): 187–196. doi:10.1002/nbm.3265. ISSN   1099-1492. PMC   4868405 . PMID   25683054.
  10. Deen, SS; Riemer, F; McLean, MA; Gill, AB; Kaggie, JD; Grist, JT; Crawford, R; Latimer, J; Baldwin, P; Earl, HM; Parkinson, CA; Smith, SA; Hodgkin, C; Moore, E; Jimenez-Linan, M; Brodie, CR; Addley, HC; Freeman, SJ; Moyle, PL; Sala, E; Graves, MJ; Brenton, JD; Gallagher, FA (2019). "Sodium MRI with 3D-cones as a measure of tumour cellularity in high grade serous ovarian cancer". European Journal of Radiology Open. 6: 156–162. doi: 10.1016/j.ejro.2019.04.001 . PMC   6477161 . PMID   31032385.
  11. 1 2 3 Ouwerkerk, Ronald; Bleich, Karen B.; Gillen, Joseph S.; Pomper, Martin G.; Bottomley, Paul A. (2003-05-01). "Tissue Sodium Concentration in Human Brain Tumors as Measured with 23Na MR Imaging". Radiology. 227 (2): 529–537. doi:10.1148/radiol.2272020483. ISSN   0033-8419. PMID   12663825.
  12. Inglese, M.; Madelin, G.; Oesingmann, N.; Babb, J. S.; Wu, W.; Stoeckel, B.; Herbert, J.; Johnson, G. (2010-03-01). "Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla". Brain. 133 (3): 847–857. doi:10.1093/brain/awp334. ISSN   0006-8950. PMC   2842511 . PMID   20110245.
  13. Broeke, NC.; Peterson, J.; Lee, J.; Martin, PA.; Farag, A.; Gomez, J.; Moussa, M.; Gaed, M.; Chin, J.; Pautler, SE.; Ward, A.; Bauman, G.; Bartha, R.; Scholl, TJ. (2018-08-24). "Characterization of Clinical Human Prostate Cancer Lesions Using 3.0-T Sodium MRI Registered to Gleason-Graded Whole-Mount Histopathology". Journal of Magnetic Resonance Imaging. 49 (5): 1409–1419. doi:10.1002/jmri.26336. PMID   30430700. S2CID   53425193.
  14. Madelin, Guillaume; Kline, Richard; Walvick, Ronn; Regatte, Ravinder R. (2014-04-23). "A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging". Scientific Reports. 4: 4763. Bibcode:2014NatSR...4E4763M. doi:10.1038/srep04763. PMC   4762219 . PMID   24755879.
  15. Newbould, R.D.; Miller, S.R.; Tielbeek, J.A.W.; Toms, L.D.; Rao, A.W.; Gold, G.E.; Strachan, R.K.; Taylor, P.C.; Matthews, P.M. (2012-01-01). "Reproducibility of sodium MRI measures of articular cartilage of the knee in osteoarthritis". Osteoarthritis and Cartilage. 20 (1): 29–35. doi:10.1016/j.joca.2011.10.007. ISSN   1063-4584. PMC   3270258 . PMID   22040861.