Soil sloughing

Last updated

Soil sloughing is soil falling off banks and slopes due to a loss in cohesion. [1] Soil sloughs off for the same reasons as landslides in general, with very wet soil being among the leading factors. [2] [ self-published source ] Sloughing is a relatively shallow phenomenon involving the uppermost layers of the soil. Bare soils are more likely to slough than soils with plant cover in part because the roots help hold the surface against gravity. Unabated soil sloughing can end in massive bank or slope failure. [3]

Contents

Impact on soil quality

According to the Mohr-Coulomb equation, the cohesion of a soil is defined as the shear strength at zero normal pressure on the surface of failure. [4] The shear force is a function of cohesion, normal stress on rupture surface, and angle of internal friction. Shear force is significantly impacted by drainage conditions. [5] Increasing water content would lead to a weaker shear strength, which in turn decreases the cohesion. [6] Moreover, when the soil water content passes a threshold value, the cohesion drops dramatically, impacting soil compaction and destabilizing soil structure, leading to soil sloughing. [6]

Vegetation

The likelihood of soil sloughing can increase after vegetation is removed from the bank and slope. [7] Vegetation provides root strength and modifies the saturated soil water regime to stabilize the soil. [7] Plant roots can anchor into cracks in bedrock through soil mass and can pass through weak areas to more stable soils to provide interlocking long-fibre binders in weak soil blocks. [7] It requires 137 tons of forces to break a soil mass reinforced by linden, which 130 tones are used to break the roots and only 7 tons are required to lead to bank failure. [8]

Soil Water

Due to precipitation, seasonal changes in Water content can lead to soil sloughing. [7] Soil sloughing is also an indicator of active soil movement and frequently requires action to reduce or prevent bank and slope failure. Soil water content is highly related to the mass erosion that leads to soil sloughing or even slopes failure. [7] Active pore water pressure can reduce the shear strength by up to 60% and lower cohesion through leaching and eluviation. [7] The loss of root strength following harvesting decreases the safety factor to a level where a moderate storm with associated pore water pressure rising can result in slope failure, despite the deforestation event that happened in the past and root reinforcement had increased. [7] Vegetation help remove some quantity of soil moisture by evapotranspiration. [7] Most slope failures by storms occur when the soil is saturated. Moreover, Soil moisture in the deforested area is higher than in forested areas. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Geotechnical engineering</span> Scientific study of earth materials in engineering problems

Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics for the solution of its respective engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences. Geotechnical (rock) engineering is a subdiscipline of geological engineering.

<span class="mw-page-title-main">Soil liquefaction</span> Soil material that is ordinarily a solid behaves like a liquid

Soil liquefaction occurs when a cohesionless saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid. In soil mechanics, the term "liquefied" was first used by Allen Hazen in reference to the 1918 failure of the Calaveras Dam in California. He described the mechanism of flow liquefaction of the embankment dam as:

If the pressure of the water in the pores is great enough to carry all the load, it will have the effect of holding the particles apart and of producing a condition that is practically equivalent to that of quicksand... the initial movement of some part of the material might result in accumulating pressure, first on one point, and then on another, successively, as the early points of concentration were liquefied.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength.

<span class="mw-page-title-main">Downhill creep</span> Slow, downward progression of rock and soil down a low grade slope

Downhill creep, also known as soil creep or commonly just creep, is a type of creep characterized by the slow, downward progression of rock and soil down a low grade slope; it can also refer to slow deformation of such materials as a result of prolonged pressure and stress. Creep may appear to an observer to be continuous, but it really is the sum of numerous minute, discrete movements of slope material caused by the force of gravity. Friction, being the primary force to resist gravity, is produced when one body of material slides past another offering a mechanical resistance between the two which acts to hold objects in place. As slope on a hill increases, the gravitational force that is perpendicular to the slope decreases and results in less friction between the material that could cause the slope to slide.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

Soil moisture is the water content of the soil. It can be expressed in terms of volume or weight. Soil moisture measurement can be based on in situ probes or remote sensing methods.

This is an index of articles relating to soil.

Claypan is a dense, compact, slowly permeable layer in the subsoil. It has a much higher clay content than the overlying material, from which it is separated by a sharply defined boundary. The dense structure restricts root growth and water infiltration. Therefore, a perched water table might form on top of the claypan. In the Canadian classification system, claypan is defined as a clay-enriched illuvial B (Bt) horizon.

Pore water pressure refers to the pressure of groundwater held within a soil or rock, in gaps between particles (pores). Pore water pressures below the phreatic level of the groundwater are measured with piezometers. The vertical pore water pressure distribution in aquifers can generally be assumed to be close to hydrostatic.

<span class="mw-page-title-main">Effective stress</span>

The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body provides the same strain or strength behaviour which is observed at ≠ 0. In the case of granular media it can be viewed as a force that keeps a collection of particles rigid. Usually this applies to sand, soil, or gravel, as well as every kind of rock and several other porous materials such as concrete, metal powders, biological tissues etc. The usefulness of an appropriate ESP formulation consists in allowing to assess the behaviour of a porous body for whatever pore pressure value on the basis of experiments involving dry samples.

A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil or rock material, or of discontinuities in soil or rock masses.

<span class="mw-page-title-main">Fracture (geology)</span> Geologic discontinuity feature, often a joint or fault

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

<span class="mw-page-title-main">Triaxial shear test</span>

A triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil and rock, and other granular materials or powders. There are several variations on the test.

There have been known various classifications of landslides. Broad definitions include forms of mass movement that narrower definitions exclude. For example, the McGraw-Hill Encyclopedia of Science and Technology distinguishes the following types of landslides:

<span class="mw-page-title-main">Shear strength (soil)</span> Magnitude of the shear stress that a soil can sustain

Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will decrease; in this case, the peak strength would be followed by a reduction of shear stress. The stress-strain relationship levels off when the material stops expanding or contracting, and when interparticle bonds are broken. The theoretical state at which the shear stress and density remain constant while the shear strain increases may be called the critical state, steady state, or residual strength.

Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction.

<span class="mw-page-title-main">Earthflow</span>

An earthflow, commonly known as earth slide or earth slip, is a type of landslide which contains a downslope viscous flow of fine-grained materials that have been saturated with water and moves under the pull of gravity. It is an intermediate type of mass wasting that is between downhill creep and mudflow. The types of materials that are susceptible to earthflows are clay, fine sand and silt, and fine-grained pyroclastic material.

Vegetation and slope stability are interrelated by the ability of the plant life growing on slopes to both promote and hinder the stability of the slope. The relationship is a complex combination of the type of soil, the rainfall regime, the plant species present, the slope aspect, and the steepness of the slope. Knowledge of the underlying slope stability as a function of the soil type, its age, horizon development, compaction, and other impacts is a major underlying aspect of understanding how vegetation can alter the stability of the slope. There are four major ways in which vegetation influences slope stability: wind throwing, the removal of water, mass of vegetation (surcharge), and mechanical reinforcement of roots.

Slope stability analysis is a static or dynamic, analytical or empirical method to evaluate the stability of earth and rock-fill dams, embankments, excavated slopes, and natural slopes in soil and rock. Slope stability refers to the condition of inclined soil or rock slopes to withstand or undergo movement. The stability condition of slopes is a subject of study and research in soil mechanics, geotechnical engineering and engineering geology. Analyses are generally aimed at understanding the causes of an occurred slope failure, or the factors that can potentially trigger a slope movement, resulting in a landslide, as well as at preventing the initiation of such movement, slowing it down or arresting it through mitigation countermeasures.

<span class="mw-page-title-main">River bank failure</span>

River bank failure can be caused when the gravitational forces acting on a bank exceed the forces which hold the sediment together. Failure depends on sediment type, layering, and moisture content.

References

  1. McLemore, Virginia (2008). Basics of Metal Mining Influenced Water. p. 88.
  2. Yerima, Bernard; van Ranst, E. (2005). Introduction to Soil Science: Soils of the Tropics. Trafford Publishing. p. 359.
  3. "Indicators of potentially unstable slopes" (PDF). Sound Native Plants. Retrieved 2019-01-22.
  4. Shahangian, S (2011). "Variable Cohesion Model for Soil Shear Strength Evaluation" (PDF). Pan-AmCGS Geotechnical Conference.
  5. Labuz, Joseph F.; Zang, Arno (2012-11-01). "Mohr–Coulomb Failure Criterion". Rock Mechanics and Rock Engineering. 45 (6): 975–979. Bibcode:2012RMRE...45..975L. doi: 10.1007/s00603-012-0281-7 . ISSN   1434-453X. S2CID   53556100.
  6. 1 2 Huang, Kun; Wan, J.-W; Chen, G.; Zeng, Y. (2012-09-01). "Testing study of relationship between water content and shear strength of unsaturated soils". 33: 2600–2604.{{cite journal}}: Cite journal requires |journal= (help)
  7. 1 2 3 4 5 6 7 8 9 Robert, R. Ziemer (1981). "THE ROLE OF VEGETATION IN THE STABILITY OF FORESTED SLOPES" (PDF). Pacific Southwest Forest and Range Experiment Station Forest Service, U.S. Dept. Of Agric., 1700 Bayview Dr., Arcata, CA, USA.
  8. Turmanina, V.I (1963). "The magnitude of the reinforcing role of tree roots". Moscow Univ. Herald, Scientific Jour. series V, no. 4: 78–80.