Filename extension | .sol |
---|---|
Developed by | Robert Fourer David Gay Brian Kernighan Bell Labs |
Type of format | mathematical programming |
sol is a file format for representing solutions of mathematical programming problems. [1] It is often used in conjunction with the nl format to return solutions from the solvers. Initially this format has been invented for connecting solvers to AMPL [2] but then it has been adopted by other systems such as FortSP for interacting with external solvers.
The sol format is low-level and is designed for compactness not for readability. It has both binary and textual representation. Many solvers such as CPLEX and MOSEK can produce files in this format either directly or through special driver programs.
The AMPL Solver Library (ASL) which allows among other things to read and write the sol files is open-source. It is used in many solvers to implement AMPL connection.
AMPL/MP Library [3] contains an NL writer and SOL reader.
Brian Wilson Kernighan is a Canadian computer scientist. He worked at Bell Labs and contributed to the development of Unix alongside Unix creators Ken Thompson and Dennis Ritchie. Kernighan's name became widely known through co-authorship of the first book on the C programming language with Dennis Ritchie. Kernighan affirmed that he had no part in the design of the C language.
IDL, short for Interactive Data Language, is a programming language used for data analysis. It is popular in particular areas of science, such as astronomy, atmospheric physics and medical imaging. IDL shares a common syntax with PV-Wave and originated from the same codebase, though the languages have subsequently diverged in detail. There are also free or costless implementations, such as GNU Data Language (GDL) and Fawlty Language (FL).
AMPL is an algebraic modeling language to describe and solve high-complexity problems for large-scale mathematical computing . It was developed by Robert Fourer, David Gay, and Brian Kernighan at Bell Laboratories. AMPL supports dozens of solvers, both open source and commercial software, including CBC, CPLEX, FortMP, MOSEK, MINOS, IPOPT, SNOPT, KNITRO, and LGO. Problems are passed to solvers as nl files. AMPL is used by more than 100 corporate clients, and by government agencies and academic institutions.
MPS is a file format for presenting and archiving linear programming (LP) and mixed integer programming problems.
The Galahad library is a thread-safe library of packages for the solution of mathematical optimization problems. The areas covered by the library are unconstrained and bound-constrained optimization, quadratic programming, nonlinear programming, systems of nonlinear equations and inequalities, and non-linear least squares problems. The library is mostly written in the Fortran 90 programming language.
Computational Infrastructure for Operations Research (COIN-OR), is a project that aims to "create for mathematical software what the open literature is for mathematical theory." The open literature provides the operations research (OR) community with a peer-review process and an archive. Papers in operations research journals on mathematical theory often contain supporting numerical results from computational studies. The software implementations, models, and data used to produce the numerical results are typically not published. The status quo impeded researchers needing to reproduce computational results, make fair comparisons, and extend the state of the art.
The TOMLAB Optimization Environment is a modeling platform for solving applied optimization problems in MATLAB.
Algebraic modeling languages (AML) are high-level computer programming languages for describing and solving high complexity problems for large scale mathematical computation. One particular advantage of some algebraic modeling languages like AIMMS, AMPL, GAMS, Gekko, MathProg, Mosel, and OPL is the similarity of their syntax to the mathematical notation of optimization problems. This allows for a very concise and readable definition of problems in the domain of optimization, which is supported by certain language elements like sets, indices, algebraic expressions, powerful sparse index and data handling variables, constraints with arbitrary names. The algebraic formulation of a model does not contain any hints how to process it.
FortMP is a software package for solving large-scale optimization problems. It solves linear programming problems, quadratic programming problems and mixed integer programming problems. Its robustness has been explored and published in the Mathematical Programming journal. FortMP is available as a standalone executable that accepts input in MPS format and as a library with interfaces in C and Fortran. It is also supported in the AMPL modeling system.
nl is a file format for presenting and archiving mathematical programming problems. Initially, this format has been invented for connecting solvers to AMPL. It has also been adopted by other systems such as COIN-OR, FortSP, and Coopr.
Robert Fourer is a scientist working in the area of operations research and management science. He is currently President of AMPL Optimization, Inc and is Professor Emeritus of Industrial Engineering and Management Sciences at Northwestern University. Robert Fourer is recognized as being the designer of the popular modeling language for mathematical programming called AMPL.
SAMPL, which stands for "Stochastic AMPL", is an algebraic modeling language resulting by expanding the well-known language AMPL with extended syntax and keywords. It is designed specifically for representing stochastic programming problems and, through recent extensions, problems with chance constraints, integrated chance constraints and robust optimization problems. It can generate the deterministic equivalent version of the instances, using all the solvers AMPL connects to, or generate an SMPS representation and use specialized decomposition based solvers, like FortSP.
MINOS is a Fortran software package for solving linear and nonlinear mathematical optimization problems. MINOS may be used for linear programming, quadratic programming, and more general objective functions and constraints, and for finding a feasible point for a set of linear or nonlinear equalities and inequalities.
Pyomo is a collection of Python software packages for formulating optimization models.
Convex Over and Under ENvelopes for Nonlinear Estimation (Couenne) is an open-source library for solving global optimization problems, also termed mixed integer nonlinear optimization problems. A global optimization problem requires to minimize a function, called objective function, subject to a set of constraints. Both the objective function and the constraints might be nonlinear and nonconvex. For solving these problems, Couenne uses a reformulation procedure and provides a linear programming approximation of any nonconvex optimization problem.
The NEOS Server is an Internet-based client-server application that provides free access to a library of optimization solvers. Its library of solvers includes more than 60 commercial, free and open source solvers, which can be applied to mathematical optimization problems of more than 12 different types, including linear programming, integer programming and nonlinear optimization.
Algebraic modeling languages like AIMMS, AMPL, GAMS, MPL and others have been developed to facilitate the description of a problem in mathematical terms and to link the abstract formulation with data-management systems on the one hand and appropriate algorithms for solution on the other. Robust algorithms and modeling language interfaces have been developed for a large variety of mathematical programming problems such as linear programs (LPs), nonlinear programs (NPs), mixed integer programs (MIPs), mixed complementarity programs (MCPs) and others. Researchers are constantly updating the types of problems and algorithms that they wish to use to model in specific domain applications.
Octeract Engine is a proprietary massively parallel deterministic global optimization solver for general Mixed-Integer Nonlinear Programs (MINLP).