Lp solve

Last updated
lp_solve
Stable release
5.5.2.11
Written in C
Operating system Cross-platform
Available inEnglish
License LGPLv2.1
Website lpsolve.sourceforge.net/5.5/

lp_solve is a free software command line utility and library for solving linear programming and mixed integer programming problems. It ships with support for two file formats, MPS and lp_solve's own LP format.. [1] . User-defined formats are supported via its "eXternal Language Interface" (XLI) [2] lp_solve also supports translating between model formats using the -w series of command line switches [3]

Contents

lp_solve uses the simplex method for linear programs, and branch-and-bound for mixed integer programs. Multiple pivoting strategies are supported, including devex. lp_solve also features a pre-solver that can remove redundant variables and remove or tighten constraints.

The lp_solve project also features an integrated development environment called LPSolve IDE, for Microsoft Windows.

Further reading

Related Research Articles

<span class="mw-page-title-main">Microsoft Excel</span> Spreadsheet editor, part of Microsoft 365

Microsoft Excel is a spreadsheet editor developed by Microsoft for Windows, macOS, Android, iOS and iPadOS. It features calculation or computation capabilities, graphing tools, pivot tables, and a macro programming language called Visual Basic for Applications (VBA). Excel forms part of the Microsoft 365 suite of software.

<span class="mw-page-title-main">AMPL</span> Algebraic modeling language

AMPL is an algebraic modeling language to describe and solve high-complexity problems for large-scale mathematical computing . It was developed by Robert Fourer, David Gay, and Brian Kernighan at Bell Laboratories. AMPL supports dozens of solvers, both open source and commercial software, including CBC, CPLEX, FortMP, MOSEK, MINOS, IPOPT, SNOPT, KNITRO, and LGO. Problems are passed to solvers as nl files. AMPL is used by more than 100 corporate clients, and by government agencies and academic institutions.

TK Solver is a mathematical modeling and problem solving software system based on a declarative, rule-based language, commercialized by Universal Technical Systems, Inc.

ECLiPSe is a software system for the development and deployment of constraint logic programming applications, e.g., in the areas of optimization, planning, scheduling, resource allocation, timetabling, transport, etc. It is also suited for teaching most aspects of combinatorial problem solving, e.g., problem modeling, constraint programming, mathematical programming, and search techniques. It contains constraint solver libraries, a high-level modeling and control language, interfaces to third-party solvers, an integrated development environment and interfaces for embedding into host environments.

MINTO is an integer programming solver which uses branch and bound algorithm.

<span class="mw-page-title-main">COIN-OR</span>

Computational Infrastructure for Operations Research (COIN-OR), is a project that aims to "create for mathematical software what the open literature is for mathematical theory." The open literature provides the operations research (OR) community with a peer-review process and an archive. Papers in operations research journals on mathematical theory often contain supporting numerical results from computational studies. The software implementations, models, and data used to produce the numerical results are typically not published. The status quo impeded researchers needing to reproduce computational results, make fair comparisons, and extend the state of the art.

The TOMLAB Optimization Environment is a modeling platform for solving applied optimization problems in MATLAB.

Algebraic modeling languages (AML) are high-level computer programming languages for describing and solving high complexity problems for large scale mathematical computation. One particular advantage of some algebraic modeling languages like AIMMS, AMPL, GAMS, Gekko, MathProg, Mosel, and OPL is the similarity of their syntax to the mathematical notation of optimization problems. This allows for a very concise and readable definition of problems in the domain of optimization, which is supported by certain language elements like sets, indices, algebraic expressions, powerful sparse index and data handling variables, constraints with arbitrary names. The algebraic formulation of a model does not contain any hints how to process it.

FortMP is a software package for solving large-scale optimization problems. It solves linear programming problems, quadratic programming problems and mixed integer programming problems. Its robustness has been explored and published in the Mathematical Programming journal. FortMP is available as a standalone executable that accepts input in MPS format and as a library with interfaces in C and Fortran. It is also supported in the AMPL modeling system.

OptimJ is an extension for Java with language support for writing optimization models and abstractions for bulk data processing. The extensions and the proprietary product implementing the extensions were developed by Ateji which went out of business in September 2011. OptimJ aims at providing a clear and concise algebraic notation for optimization modeling, removing compatibility barriers between optimization modeling and application programming tools, and bringing software engineering techniques such as object-orientation and modern IDE support to optimization experts.

MOSEK is a software package for the solution of linear, mixed-integer linear, quadratic, mixed-integer quadratic, quadratically constrained, conic and convex nonlinear mathematical optimization problems. The applicability of the solver varies widely and is commonly used for solving problems in areas such as engineering, finance and computer science.

AIMMS is a prescriptive analytics software company with offices in the Netherlands, United States and Singapore.

The FICO Xpress optimizer is a commercial optimization solver for linear programming (LP), mixed integer linear programming (MILP), convex quadratic programming (QP), convex quadratically constrained quadratic programming (QCQP), second-order cone programming (SOCP) and their mixed integer counterparts. Xpress includes a general purpose non-linear solver, Xpress NonLinear, including a successive linear programming algorithm, and Artelys Knitro.

LINDO is a software package for linear programming, integer programming, nonlinear programming, stochastic programming and global optimization.

Artelys Knitro is a commercial software package for solving large scale nonlinear mathematical optimization problems.

<span class="mw-page-title-main">OR-Tools</span> Open source software suite by Google

Google OR-Tools is a free and open-source software suite developed by Google for solving linear programming (LP), mixed integer programming (MIP), constraint programming (CP), vehicle routing (VRP), and related optimization problems.

<span class="mw-page-title-main">HiGHS optimization solver</span> Numerical software

HiGHS is open-source software to solve linear programming (LP), mixed-integer programming (MIP), and convex quadratic programming (QP) models.

References

  1. "Formulation of an lp problem in lpsolve" . Retrieved 3 December 2021.
  2. "External Language Interfaces" . Retrieved 3 December 2021.
  3. "lp_solve command" . Retrieved 3 December 2021.