LINDO

Last updated
LINDO
Developer(s) LINDO SYSTEMS INC.
Stable release
14.0 (as of 2023/09/27)
Type Mathematical optimization
License Proprietary
Website lindo.com

LINDO (Linear, Interactive, and Discrete Optimizer) is a software package for linear programming, integer programming, nonlinear programming, stochastic programming and global optimization. [1]

Contents

LINGO is a mathematical modeling language used as part of LINDO. [2] [3]

Today, LINDO solvers are part of LINDO API (Application Programming Interface) a set of software libraries that can be called from different programming languages to create custom mathematical optimization applications.

It is designed to solve optimization problems that arise in areas of business, industry, research, and government. The LINDO package includes sample applications related to product distribution, ingredient blending, production, personnel scheduling, inventory management.

LINDO also creates "What'sBest!" which is an add-in for linear, integer and nonlinear optimization. First released for Lotus 1-2-3 [4] and later also for Microsoft Excel. [5]

Features

Related Research Articles

<span class="mw-page-title-main">Mathematical optimization</span> Study of mathematical algorithms for optimization problems

Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

In mathematics, nonlinear programming (NLP) is the process of solving an optimization problem where some of the constraints are not linear equalities or the objective function is not a linear function. An optimization problem is one of calculation of the extrema of an objective function over a set of unknown real variables and conditional to the satisfaction of a system of equalities and inequalities, collectively termed constraints. It is the sub-field of mathematical optimization that deals with problems that are not linear.

<span class="mw-page-title-main">AMPL</span>

AMPL is an algebraic modeling language to describe and solve high-complexity problems for large-scale mathematical computing . It was developed by Robert Fourer, David Gay, and Brian Kernighan at Bell Laboratories. AMPL supports dozens of solvers, both open source and commercial software, including CBC, CPLEX, FortMP, MOSEK, MINOS, IPOPT, SNOPT, KNITRO, and LGO. Problems are passed to solvers as nl files. AMPL is used by more than 100 corporate clients, and by government agencies and academic institutions.

The general algebraic modeling system (GAMS) is a high-level modeling system for mathematical optimization. GAMS is designed for modeling and solving linear, nonlinear, and mixed-integer optimization problems. The system is tailored for complex, large-scale modeling applications and allows the user to build large maintainable models that can be adapted to new situations. The system is available for use on various computer platforms. Models are portable from one platform to another.

The Galahad library is a thread-safe library of packages for the solution of mathematical optimization problems. The areas covered by the library are unconstrained and bound-constrained optimization, quadratic programming, nonlinear programming, systems of nonlinear equations and inequalities, and non-linear least squares problems. The library is mostly written in the Fortran 90 programming language.

<span class="mw-page-title-main">COIN-OR</span>

Computational Infrastructure for Operations Research (COIN-OR), is a project that aims to "create for mathematical software what the open literature is for mathematical theory." The open literature provides the operations research (OR) community with a peer-review process and an archive. Papers in operations research journals on mathematical theory often contain supporting numerical results from computational studies. The software implementations, models, and data used to produce the numerical results are typically not published. The status quo impeded researchers needing to reproduce computational results, make fair comparisons, and extend the state of the art.

The TOMLAB Optimization Environment is a modeling platform for solving applied optimization problems in MATLAB.

Algebraic modeling languages (AML) are high-level computer programming languages for describing and solving high complexity problems for large scale mathematical computation. One particular advantage of some algebraic modeling languages like AIMMS, AMPL, GAMS, Gekko, MathProg, Mosel, and OPL is the similarity of their syntax to the mathematical notation of optimization problems. This allows for a very concise and readable definition of problems in the domain of optimization, which is supported by certain language elements like sets, indices, algebraic expressions, powerful sparse index and data handling variables, constraints with arbitrary names. The algebraic formulation of a model does not contain any hints how to process it.

<span class="mw-page-title-main">Zuse Institute Berlin</span> Research institute for applied mathematics and computer science in Berlin, Germany

The Zuse Institute Berlin is a research institute for applied mathematics and computer science on the campus of Freie Universität Berlin in Dahlem, Berlin, Germany.

MOSEK is a software package for the solution of linear, mixed-integer linear, quadratic, mixed-integer quadratic, quadratically constrained, conic and convex nonlinear mathematical optimization problems. The applicability of the solver varies widely and is commonly used for solving problems in areas such as engineering, finance and computer science.

AIMMS is a prescriptive analytics software company with offices in the Netherlands, United States and Singapore.

MINOS is a Fortran software package for solving linear and nonlinear mathematical optimization problems. MINOS may be used for linear programming, quadratic programming, and more general objective functions and constraints, and for finding a feasible point for a set of linear or nonlinear equalities and inequalities.

Convex Over and Under ENvelopes for Nonlinear Estimation (Couenne) is an open-source library for solving global optimization problems, also termed mixed integer nonlinear optimization problems. A global optimization problem requires to minimize a function, called objective function, subject to a set of constraints. Both the objective function and the constraints might be nonlinear and nonconvex. For solving these problems, Couenne uses a reformulation procedure and provides a linear programming approximation of any nonconvex optimization problem.

Deterministic global optimization is a branch of numerical optimization which focuses on finding the global solutions of an optimization problem whilst providing theoretical guarantees that the reported solution is indeed the global one, within some predefined tolerance. The term "deterministic global optimization" typically refers to complete or rigorous optimization methods. Rigorous methods converge to the global optimum in finite time. Deterministic global optimization methods are typically used when locating the global solution is a necessity, when it is extremely difficult to find a feasible solution, or simply when the user desires to locate the best possible solution to a problem.

Artelys Knitro is a commercial software package for solving large scale nonlinear mathematical optimization problems.

Algebraic modeling languages like AIMMS, AMPL, GAMS, MPL and others have been developed to facilitate the description of a problem in mathematical terms and to link the abstract formulation with data-management systems on the one hand and appropriate algorithms for solution on the other. Robust algorithms and modeling language interfaces have been developed for a large variety of mathematical programming problems such as linear programs (LPs), nonlinear programs (NPs), mixed integer programs (MIPs), mixed complementarity programs (MCPs) and others. Researchers are constantly updating the types of problems and algorithms that they wish to use to model in specific domain applications.

<span class="mw-page-title-main">HiGHS optimization solver</span> Numerical software

HiGHS is open-source software to solve linear programming (LP), mixed-integer programming (MIP), and convex quadratic programming (QP) models.

References

  1. Linus E. Schrage, Linear, Integer, and Quadratic Programming with Lindo, Scientific Press, 1986, ISBN   0894260901
  2. Tulett, David M.; Ke, Ginger Y. (December 2022). "Using LINGO for Business Students". Operations Research Forum. 4 (1). Springer Science and Business Media LLC. doi:10.1007/s43069-022-00184-2.
  3. Cunningham, Kevin; Schrage, Linus (2004). "The LINGO Algebraic Modeling Language". Modeling Languages in Mathematical Optimization. Springer. pp. 159–171. doi:10.1007/978-1-4613-0215-5_9. ISBN   9781461302155.
  4. Nash, John C. (1991-04-16). "Optimizing Add-Ins: The Educated Guess, What'sBest!". PC Magazine. Vol. 10, no. 7. Ziff Davis. pp. 130, 132. ISSN   0888-8507.
  5. Arnett, Nick (1988-08-29). "Spreadsheet Optimizer Ported to Macintosh". InfoWorld. Vol. 10, no. 35. IDG. p. 24. ISSN   0199-6649.