This article needs additional citations for verification .(June 2017) |
Developer(s) | Andreas Wächter, Carl Laird |
---|---|
Initial release | August 26, 2005 |
Stable release | 3.14.16 [1] / April 22, 2024 |
Operating system | UNIX, Linux, macOS, Microsoft Windows |
Available in | C++ |
License | Eclipse Public License |
Website | github |
IPOPT, short for "Interior Point OPTimizer, pronounced I-P-Opt", is a software library for large scale nonlinear optimization of continuous systems.
It is written in C++ (after migrating from Fortran and C) and is released under the EPL (formerly CPL). IPOPT implements a primal-dual interior point method, and uses line searches based on Filter methods (Fletcher and Leyffer).
IPOPT can be called from various modeling environments: C, C++, Fortran, Java, R, Python, and others. [2]
IPOPT is part of the COIN-OR project.
IPOPT is designed to exploit 1st derivative (gradient) and 2nd derivative (Hessian) information if provided (usually via automatic differentiation routines in modeling environments such as AMPL). If no Hessians are provided, IPOPT will approximate them using a quasi-Newton methods, specifically a BFGS update.
IPOPT was originally developed [3] by Ph.D. student Andreas Wächter and Prof. Lorenz T. Biegler of the Department of Chemical Engineering at Carnegie Mellon University. Their work was recognized with the INFORMS Computing Society Prize in 2009.
Arvind Raghunathan later created an extension to IPOPT for Mathematical programming with equilibrium constraints (MPEC). [4] This version of IPOPT is generally known as IPOPT-C (with the 'C' standing for 'complementarity'). While in theory any mixed-integer program can be recast as an MPEC, it may or may not be solvable with IPOPT-C. Solution of MINLPs (Mixed-Integer Nonlinear Programs) using IPOPT is still being explored. [5] [6]
Carl Laird and Andreas Wächter are the developers of IPOPT 3.0, which is a re-implementation of IPOPT in C++. Wächter and Laird were awarded the 2011 J. H. Wilkinson Prize for Numerical Software for this development.
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming.
Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
In mathematics, nonlinear programming (NLP) is the process of solving an optimization problem where some of the constraints are not linear equalities or the objective function is not a linear function. An optimization problem is one of calculation of the extrema of an objective function over a set of unknown real variables and conditional to the satisfaction of a system of equalities and inequalities, collectively termed constraints. It is the sub-field of mathematical optimization that deals with problems that are not linear.
AMPL is an algebraic modeling language to describe and solve high-complexity problems for large-scale mathematical computing . It was developed by Robert Fourer, David Gay, and Brian Kernighan at Bell Laboratories. AMPL supports dozens of solvers, both open source and commercial software, including CBC, CPLEX, FortMP, MOSEK, MINOS, IPOPT, SNOPT, KNITRO, and LGO. Problems are passed to solvers as nl files. AMPL is used by more than 100 corporate clients, and by government agencies and academic institutions.
IBM ILOG CPLEX Optimization Studio is an optimization software package.
The Galahad library is a thread-safe library of packages for the solution of mathematical optimization problems. The areas covered by the library are unconstrained and bound-constrained optimization, quadratic programming, nonlinear programming, systems of nonlinear equations and inequalities, and non-linear least squares problems. The library is mostly written in the Fortran 90 programming language.
The TOMLAB Optimization Environment is a modeling platform for solving applied optimization problems in MATLAB.
Algebraic modeling languages (AML) are high-level computer programming languages for describing and solving high complexity problems for large scale mathematical computation. One particular advantage of some algebraic modeling languages like AIMMS, AMPL, GAMS, Gekko, MathProg, Mosel, and OPL is the similarity of their syntax to the mathematical notation of optimization problems. This allows for a very concise and readable definition of problems in the domain of optimization, which is supported by certain language elements like sets, indices, algebraic expressions, powerful sparse index and data handling variables, constraints with arbitrary names. The algebraic formulation of a model does not contain any hints how to process it.
Mathematical programming with equilibrium constraints (MPEC) is the study of constrained optimization problems where the constraints include variational inequalities or complementarities. MPEC is related to the Stackelberg game.
FortMP is a software package for solving large-scale optimization problems. It solves linear programming problems, quadratic programming problems and mixed integer programming problems. Its robustness has been explored and published in the Mathematical Programming journal. FortMP is available as a standalone executable that accepts input in MPS format and as a library with interfaces in C and Fortran. It is also supported in the AMPL modeling system.
nl is a file format for presenting and archiving mathematical programming problems. Initially, this format has been invented for connecting solvers to AMPL. It has also been adopted by other systems such as COIN-OR, FortSP, and Coopr.
WORHP, also referred to as eNLP by ESA, is a mathematical software library for numerically solving large scale continuous nonlinear optimization problems.
JModelica.org is a commercial software platform based on the Modelica modeling language for modeling, simulating, optimizing and analyzing complex dynamic systems. The platform is maintained and developed by Modelon AB in collaboration with academic and industrial institutions, notably Lund University and the Lund Center for Control of Complex Systems (LCCC). The platform has been used in industrial projects with applications in robotics, vehicle systems, energy systems, CO2 separation and polyethylene production.
MINOS is a Fortran software package for solving linear and nonlinear mathematical optimization problems. MINOS may be used for linear programming, quadratic programming, and more general objective functions and constraints, and for finding a feasible point for a set of linear or nonlinear equalities and inequalities.
Convex Over and Under ENvelopes for Nonlinear Estimation (Couenne) is an open-source library for solving global optimization problems, also termed mixed integer nonlinear optimization problems. A global optimization problem requires to minimize a function, called objective function, subject to a set of constraints. Both the objective function and the constraints might be nonlinear and nonconvex. For solving these problems, Couenne uses a reformulation procedure and provides a linear programming approximation of any nonconvex optimization problem.
Deterministic global optimization is a branch of numerical optimization which focuses on finding the global solutions of an optimization problem whilst providing theoretical guarantees that the reported solution is indeed the global one, within some predefined tolerance. The term "deterministic global optimization" typically refers to complete or rigorous optimization methods. Rigorous methods converge to the global optimum in finite time. Deterministic global optimization methods are typically used when locating the global solution is a necessity, when it is extremely difficult to find a feasible solution, or simply when the user desires to locate the best possible solution to a problem.
Artelys Knitro is a commercial software package for solving large scale nonlinear mathematical optimization problems.
Algebraic modeling languages like AIMMS, AMPL, GAMS, MPL and others have been developed to facilitate the description of a problem in mathematical terms and to link the abstract formulation with data-management systems on the one hand and appropriate algorithms for solution on the other. Robust algorithms and modeling language interfaces have been developed for a large variety of mathematical programming problems such as linear programs (LPs), nonlinear programs (NPs), mixed integer programs (MIPs), mixed complementarity programs (MCPs) and others. Researchers are constantly updating the types of problems and algorithms that they wish to use to model in specific domain applications.
Octeract Engine is a proprietary massively parallel deterministic global optimization solver for general Mixed-Integer Nonlinear Programs (MINLP) and the current world record holder in MINLP performance.