Somatic genome processing

Last updated

The genome of most cells of eukaryotes remains mainly constant during life. However, there are cases of genome being altered in specific cells or in different life cycle stages during development. For example, not every human cell has the same genetic content as red blood cells which are devoid of nucleus. One of the best known groups in respect of changes in somatic genome are ciliates. The process resulting in a variation of somatic genome that differs from germline genome is called somatic genome processing.

Contents

Genome loss

The result of this process is the removal of a whole genome from a cell. The most known example is the enucleation process of erythrocytes. A processed stem cell goes through changes causing it to lose a nucleus. In the beginning phase, pro-erythroblast goes through another mitotic divisions, in which an erythroblast with a smaller nucleus is created and moved to the side of the cell. The nucleus becomes isolated from cytoplasm and then erythroblast is divided into reticulocyte with cytoplasm and pyrenocyte with condensed nucleus. Pyrenocyte with all genetic material from cell is degraded then by a macrophage. Loss of genome is in this case advantageous, since pyrenocyte can accumulate more hemoglobin. Mature red blood cell without a nucleus, can properly deliver oxygen. [1]

Chromatin diminution

Chromatin diminution is a process of partial elimination of chromatin genetic material from genome of prospective somatic cells. This process was found to occur during the early developmental stage in three groups: nematodes, copepods, and hagfish [2] One of the first studies regarding somatic genome processing was observed by Boveri large-scale chromatin elimination in parasitic nematode Parascaris univalens . [3] During chromatin diminution, somatic chromosomes becomes fragmented with new telomeres added in many different places and devoid of heterochromatin so it differs from germline cell in respect of structure and genetic content. Germline cells of P. univalens contain only two chromosomes, but in early embryogenesis central euchromatic regions of the chromosomes fragment into diploid somatic set of 2×29 autosomes and 2×6 X chromosomes in females or 2×29 autosomes and 6 X chromosomes in males, which segregate to the two daughter nuclei. After all heterochromatin becomes degraded in cytoplasm. As a result of chromatin diminution P. univalens loses about 80–90% of the total nuclear germ line DNA. [4] [5] [6]

Chromatin diminution occurs also in unicellular eukaryotes, such as ciliates. Ciliates have two nuclei: micronucleus (germ-line cell nucleus) that does not express genes and macronucleus, where most genes are expressed, and is subject to chromatin elimination. During this process chromosomes are fragmented, chromatin eliminated and new DNA molecules with added telomeres are created. The final macronucleus has greater genetic content than micronucleus. In ciliates there are two types of diminution: the first is fragmentation of genome and loss of repetitive sequences and the second is deletion of internally eliminated sequences in chromosomes and the rejoining of remaining DNA fragments. [6]

Gene unscrambling

Gene unscrambling is type of genome-wide processing found particularly in ciliates. The germline genes in the micronucleus of ciliates are composed of protein-coding DNA fragments (MDSs) interrupted by many non-coding DNA sequences, also called internal eliminated (IESs).

In the Spirotrichea class, to which Oxytricha belongs, protein-coding DNA fragments in a micronucleus are located in permuted order. During sexual development the genetic content of somatic macronucleus is derived from micronucleus. First some parts, including IESs, of micronuclear DNA are removed to give transcriptionally active genome in macronucleus. Also micronuclear-encoded MDSs which are nonsequential must undergo gene unscrambling to be ligated in correct order to give functional genes [7] [8]

Local rearrangements

Local rearrangements affect specific loci only. Such rearrangements, for instance, help create genes that produce a great variation of immunoglobulins in vertebrates. During life, organisms have contact with a large number of antigens. Which means that the immune system needs to synthesize a wide range of antibodies. Each immunoglobulin is a tetramer consisting of four polypeptides connected by disulfide bridges. They form two long heavy chains and two short light chains. But vertebrate genome does not code entire genes of heavy and light immunoglobulins, only gene segments. Segments of heavy chain are located on chromosome 14, they include 11 constant gene segments (CH), that are preceded by 123-129 variable segments (VH), 27 diversity gene segments (DH) and 9 joining segments (JH), coding different versions of components V, D, J. Loci of light chains on chromosome 2 (locus κ) and chromosome 22 (locus λ) have similar structure, but they do not contain D segments. At the early stage of lymphocyte B development, loci of immunoglobulins are rearranged. During rearrangement, segment VH on heavy chain locus is connected with one DH segment, then V-D group is combined with JH segment. Eventually, exon with open reading frame coding segments: VH, DH, JH of immunoglobulin. Through RNA splicing during transcription, this exon becomes connected to exon for CH segment. Complementary mRNA of heavy chain can be translated into immunoglobulin specific only for one lymphocyte. [9]

Related Research Articles

<i>Tetrahymena</i> Genus of single-celled organisms

Tetrahymena, a unicellular eukaryote, is a genus of free-living ciliates. The genus Tetrahymena is the most widely studied member of its phylum. It can produce, store and react with different types of hormones. Tetrahymena cells can recognize both related and hostile cells.

<span class="mw-page-title-main">Karyotype</span> Photographic display of total chromosome complement in a cell

A karyotype is the general appearance of the complete set of chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is discerned by determining the chromosome complement of an individual, including the number of chromosomes and any abnormalities.

<i>Paramecium</i> Genus of unicellular ciliates, commonly studied as a representative of the ciliate group

Paramecium is a genus of eukaryotic, unicellular ciliates, commonly studied as a model organism of the ciliate group. Paramecium are widespread in freshwater, brackish, and marine environments and are often abundant in stagnant basins and ponds. Because some species are readily cultivated and easily induced to conjugate and divide, they have been widely used in classrooms and laboratories to study biological processes. The usefulness of Paramecium as a model organism has caused one ciliate researcher to characterize it as the "white rat" of the phylum Ciliophora.

In cellular biology, a somatic cell, or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Somatic cells compose the body of an organism and divide through the process of binary fission and mitotic division.

Double minutes are small fragments of extrachromosomal DNA, which have been observed in a large number of human tumors including breast, lung, ovary, colon, and most notably, neuroblastoma. They are a manifestation of gene amplification as a result of chromothripsis, during the development of tumors, which give the cells selective advantages for growth and survival. This selective advantage is as a result of double minutes frequently harboring amplified oncogenes and genes involved in drug resistance. DMs, like actual chromosomes, are composed of chromatin and replicate in the nucleus of the cell during cell division. Unlike typical chromosomes, they are composed of circular fragments of DNA, up to only a few million base pairs in size, and contain no centromere or telomere. Further to this, they often lack key regulatory elements, allowing genes to be constitutively expressed. The term ecDNA may be used to refer to DMs in a more general manner.

A macronucleus is the larger type of nucleus in ciliates. Macronuclei are polyploid and undergo direct division without mitosis. It controls the non-reproductive cell functions, such as metabolism. During conjugation, the macronucleus disintegrates, and a new one is formed by karyogamy of the micronuclei.

<span class="mw-page-title-main">Micronucleus</span>

Micronucleus is the name given to the small nucleus that forms whenever a chromosome or a fragment of a chromosome is not incorporated into one of the daughter nuclei during cell division. It usually is a sign of genotoxic events and chromosomal instability. Micronuclei are commonly seen in cancerous cells and may indicate genomic damage events that can increase the risk of developmental or degenerative diseases. Micronuclei form during anaphase from lagging acentric chromosome or chromatid fragments caused by incorrectly repaired or unrepaired DNA breaks or by nondisjunction of chromosomes. This incorrect segregation of chromosomes may result from hypomethylation of repeat sequences present in pericentromeric DNA, irregularities in kinetochore proteins or their assembly, dysfunctional spindle apparatus, or flawed anaphase checkpoint genes. Micronuclei can contribute to genome instability by promoting a catastrophic mutational event called chromothripsis. Many micronucleus assays have been developed to test for the presence of these structures and determine their frequency in cells exposed to certain chemicals or subjected to stressful conditions.

<span class="mw-page-title-main">Nuclear dimorphism</span>

Nuclear dimorphism is a term referred to the special characteristic of having two different kinds of nuclei in a cell. There are many differences between the types of nuclei. This feature is observed in protozoan ciliates, like Tetrahymena, and some foraminifera. Ciliates contain two nucleus types: a macronucleus that is primarily used to control metabolism, and a micronucleus which performs reproductive functions and generates the macronucleus. The compositions of the nuclear pore complexes help determine the properties of the macronucleus and micronucleus. Nuclear dimorphism is subject to complex epigenetic controls. Nuclear dimorphism is continuously being studied to understand exactly how the mechanism works and how it is beneficial to cells. Learning about nuclear dimorphism is beneficial to understanding old eukaryotic mechanisms that have been preserved within these unicellular organisms but did not evolve into multicellular eukaryotes.

V(D)J recombination is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire of antibodies/immunoglobulins and T cell receptors (TCRs) found in B cells and T cells, respectively. The process is a defining feature of the adaptive immune system.

NUMT, pronounced "new might", is an acronym for "nuclear mitochondrial DNA" segment or genetic locus coined by evolutionary geneticist, Jose V. Lopez, which describes a transposition of any type of cytoplasmic mitochondrial DNA into the nuclear genome of eukaryotic organisms.

Immunoglobulin lambda locus, also known as IGL@, is a region on the q arm of human chromosome 22, region 11.22 (22q11.22) that contains genes for the lambda light chains of antibodies.

Karyorelictea is a class of ciliates in the subphylum Postciliodesmatophora. Most species are members of the microbenthos community, that is, microscopic organisms found in the marine interstitial habitat, though one genus, Loxodes, is found in freshwater.

<span class="mw-page-title-main">Ciliate</span> Taxon of protozoans with hair-like organelles called cilia

The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

<i>Chilodonella uncinata</i> Species of single-celled organism

Chilodonella uncinata is a single-celled organism of the ciliate class of alveoles. As a ciliate, C. uncinata has cilia covering its body and a dual nuclear structure, the micronucleus and macronucleus. Unlike some other ciliates, C. uncinata contains millions of minichromosomes in its macronucleus while its micronucleus is estimated to contain 3 chromosomes. Childonella uncinata is the causative agent of Chilodonelloza, a disease that affects the gills and skin of fresh water fish, and may act as a facultative of mosquito larva.

<span class="mw-page-title-main">Chromothripsis</span> Massive chromosomal rearrangement process linked to cancer

Chromothripsis is a mutational process by which up to thousands of clustered chromosomal rearrangements occur in a single event in localised and confined genomic regions in one or a few chromosomes, and is known to be involved in both cancer and congenital diseases. It occurs through one massive genomic rearrangement during a single catastrophic event in the cell's history. It is believed that for the cell to be able to withstand such a destructive event, the occurrence of such an event must be the upper limit of what a cell can tolerate and survive. The chromothripsis phenomenon opposes the conventional theory that cancer is the gradual acquisition of genomic rearrangements and somatic mutations over time.

Chromosomal instability (CIN) is a type of genomic instability in which chromosomes are unstable, such that either whole chromosomes or parts of chromosomes are duplicated or deleted. More specifically, CIN refers to the increase in rate of addition or loss of entire chromosomes or sections of them. The unequal distribution of DNA to daughter cells upon mitosis results in a failure to maintain euploidy leading to aneuploidy. In other words, the daughter cells do not have the same number of chromosomes as the cell they originated from. Chromosomal instability is the most common form of genetic instability and cause of aneuploidy.

<i>Sterkiella histriomuscorum</i> Species of single-celled organism

Sterkiella histriomuscorum, formerly Oxytricha trifallax, is a ciliate species in the genus Sterkiella, known for its highly fragmented genomes which have been used as a model for ciliate genetics.

Antibody structure is made up of two heavy-chains and two light-chains. These chains are held together by disulfide bonds. The arrangement or processes that put together different parts of this antibody molecule play important role in antibody diversity and production of different subclasses or classes of antibodies. The organization and processes take place during the development and differentiation of B cells. That is, the controlled gene expression during transcription and translation coupled with the rearrangements of immunoglobulin gene segments result in the generation of antibody repertoire during development and maturation of B cells.

<i>Tetrahymena thermophila</i> Species of ciliate protozoa

Tetrahymena thermophila is a species of Ciliophora in the family Tetrahymenidae. It is a free living protozoa and occurs in fresh water.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is intended as introductory material for novices; for more specific and technical detail, see the article corresponding to each term. For related terms, see Glossary of evolutionary biology.

References

  1. Migliaccio, Anna Rita (2017-04-27). "Erythroblast enucleation". Haematologica. 95 (12): 1985–1988. doi:10.3324/haematol.2010.033225. ISSN   0390-6078. PMC   2995553 . PMID   21123437.
  2. Zufall, Rebecca A.; Robinson, Tessa; Katz, Laura A. (2005-09-15). "Evolution of developmentally regulated genome rearrangements in eukaryotes". Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 304 (5): 448–455. doi:10.1002/jez.b.21056. ISSN   1552-5007. PMID   16032699.
  3. Boveri, Theodor (1887). "Über Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala". Anatomischer Anzeiger.
  4. Bachmann-Waldmann, Christa; Jentsch, Stephan; Tobler, Heinz; Müller, Fritz (2004-03-01). "Chromatin diminution leads to rapid evolutionary changes in the organization of the germ line genomes of the parasitic nematodes A. suum and P. univalens" (PDF). Molecular and Biochemical Parasitology. 134 (1): 53–64. doi:10.1016/j.molbiopara.2003.11.001. ISSN   0166-6851. PMID   14747143.
  5. Niedermaier, J.; Moritz, K. B. (2000-11-01). "Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and programmed breakdown of compound chromosomes". Chromosoma. 109 (7): 439–452. doi:10.1007/s004120000104. ISSN   0009-5915. PMID   11151673. S2CID   27788213.
  6. 1 2 Goday, C.; Pimpinelli, S. (1993). "The occurrence, role and evolution of chromatin diminution in nematodes". Parasitology Today. 9 (9): 319–322. doi:10.1016/0169-4758(93)90229-9. PMID   15463793.
  7. Swart, Estienne C.; Bracht, John R.; Magrini, Vincent; Minx, Patrick; Chen, Xiao; Zhou, Yi; Khurana, Jaspreet S.; Goldman, Aaron D.; Nowacki, Mariusz (2013-01-29). "The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes". PLOS Biology. 11 (1): e1001473. doi: 10.1371/journal.pbio.1001473 . ISSN   1544-9173. PMC   3558436 . PMID   23382650.
  8. Prescott, D M (1999-03-01). "The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates". Nucleic Acids Research. 27 (5): 1243–1250. doi:10.1093/nar/27.5.1243. ISSN   0305-1048. PMC   148308 . PMID   9973610.
  9. Brown, T.A. (2007). Genomes 3. Garland Science. pp. 439–441. ISBN   9780815341383.