Spatial neural network

Last updated
Difference in predicted house prices within the states of Austria, from a GWR and a GWNN whose the weighting metrics respectively use the Euclidean distance (ED) and travel time distance (TTD) GWNN and GWR prediction differences.jpg
Difference in predicted house prices within the states of Austria, from a GWR and a GWNN whose the weighting metrics respectively use the Euclidean distance (ED) and travel time distance (TTD)

Spatial neural networks (SNNs) constitute a supercategory of tailored neural networks (NNs) for representing and predicting geographic phenomena. They generally improve both the statistical accuracy and reliability of the a-spatial/classic NNs whenever they handle geo-spatial datasets, and also of the other spatial (statistical) models (e.g. spatial regression models) whenever the geo-spatial datasets' variables depict non-linear relations. [2] [3] [1]

Contents

History

Openshaw (1993) and Hewitson et al. (1994) started investigating the applications of the a-spatial/classic NNs to geographic phenomena. [4] [5] They observed that a-spatial/classic NNs outperform the other extensively applied a-spatial/classic statistical models (e.g. regression models, clustering algorithms, maximum likelihood classifications) in geography, especially when there exist non-linear relations between the geo-spatial datasets' variables. [4] [5] Thereafter, Openshaw (1998) also compared these a-spatial/classic NNs with other modern and original a-spatial statistical models at that time (i.e. fuzzy logic models, genetic algorithm models); he concluded that the a-spatial/classic NNs are statistically competitive. [6] Thereafter scientists developed several categories of SNNs see below.

Spatial models

Spatial statistical models (aka geographically weighted models, or merely spatial models) like the geographically weighted regressions (GWRs), SNNs, etc., are spatially tailored (a-spatial/classic) statistical models, so to learn and model the deterministic components of the spatial variability (i.e. spatial dependence/autocorrelation, spatial heterogeneity, spatial association/cross-correlation) from the geo-locations of the geo-spatial datasets’ (statistical) individuals/units. [7] [8] [1] [9]

Categories

There exist several categories of methods/approaches for designing and applying SNNs.

Applications

There exist case-study applications of SNNs in:

See also

Related Research Articles

<span class="mw-page-title-main">Neural network (machine learning)</span> Computational model used in machine learning, based on connected, hierarchical functions

Neural networks are a branch of machine learning models inspired by the neuronal organization found in the biological neural networks in animal brains.

<span class="mw-page-title-main">Meta-analysis</span> Statistical method that summarizes data from multiple sources

Meta-analysis is the statistical combination of the results of multiple studies addressing a similar research question. An important part of this method involves computing an effect size across all of the studies; this involves extracting effect sizes and variance measures from various studies. Meta-analyses are integral in supporting research grant proposals, shaping treatment guidelines, and influencing health policies. They are also pivotal in summarizing existing research to guide future studies, thereby cementing their role as a fundamental methodology in metascience. Meta-analyses are often, but not always, important components of a systematic review procedure. For instance, a meta-analysis may be conducted on several clinical trials of a medical treatment, in an effort to obtain a better understanding of how well the treatment works.

Bootstrap aggregating, also called bagging, is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging approach.

A GIS software program is a computer program to support the use of a geographic information system, providing the ability to create, store, manage, query, analyze, and visualize geographic data, that is, data representing phenomena for which location is important. The GIS software industry encompasses a broad range of commercial and open-source products that provide some or all of these capabilities within various information technology architectures.

In statistics, homogeneity and its opposite, heterogeneity, arise in describing the properties of a dataset, or several datasets. They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part. In meta-analysis, which combines the data from several studies, homogeneity measures the differences or similarities between the several studies.

<span class="mw-page-title-main">Spatial analysis</span> Formal techniques which study entities using their topological, geometric, or geographic properties

Spatial analysis is any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is geospatial analysis, the technique applied to structures at the human scale, most notably in the analysis of geographic data. It may also be applied to genomics, as in transcriptomics data.

<span class="mw-page-title-main">Modifiable areal unit problem</span> Source of statistical bias

The modifiable areal unit problem (MAUP) is a source of statistical bias that can significantly impact the results of statistical hypothesis tests. MAUP affects results when point-based measures of spatial phenomena are aggregated into spatial partitions or areal units as in, for example, population density or illness rates. The resulting summary values are influenced by both the shape and scale of the aggregation unit.

<span class="mw-page-title-main">Spiking neural network</span> Artificial neural network that mimics neurons

Spiking neural networks (SNNs) are artificial neural networks (ANN) that more closely mimic natural neural networks. In addition to neuronal and synaptic state, SNNs incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not transmit information at each propagation cycle, but rather transmit information only when a membrane potential—an intrinsic quality of the neuron related to its membrane electrical charge—reaches a specific value, called the threshold. When the membrane potential reaches the threshold, the neuron fires, and generates a signal that travels to other neurons which, in turn, increase or decrease their potentials in response to this signal. A neuron model that fires at the moment of threshold crossing is also called a spiking neuron model.

In machine learning, lazy learning is a learning method in which generalization of the training data is, in theory, delayed until a query is made to the system, as opposed to eager learning, where the system tries to generalize the training data before receiving queries.

<span class="mw-page-title-main">Spatial heterogeneity</span>

Spatial heterogeneity is a property generally ascribed to a landscape or to a population. It refers to the uneven distribution of various concentrations of each species within an area. A landscape with spatial heterogeneity has a mix of concentrations of multiple species of plants or animals (biological), or of terrain formations (geological), or environmental characteristics filling its area. A population showing spatial heterogeneity is one where various concentrations of individuals of this species are unevenly distributed across an area; nearly synonymous with "patchily distributed."

Seed-based d mapping or SDM is a statistical technique created by Joaquim Radua for meta-analyzing studies on differences in brain activity or structure which used neuroimaging techniques such as fMRI, VBM, DTI or PET. It may also refer to a specific piece of software created by the SDM Project to carry out such meta-analyses.

There are many types of artificial neural networks (ANN).

<span class="mw-page-title-main">CrimeStat</span>

CrimeStat is a crime mapping software program. CrimeStat is Windows-based program that conducts spatial and statistical analysis and is designed to interface with a geographic information system (GIS). The program is developed by Ned Levine & Associates under the direction of Ned Levine, with funding by the National Institute of Justice (NIJ), an agency of the United States Department of Justice. The program and manual are distributed for free by NIJ.

Medical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care.

<span class="mw-page-title-main">Symbolic regression</span> Type of regression analysis

Symbolic regression (SR) is a type of regression analysis that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity.

Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. Data augmentation has important applications in Bayesian analysis, and the technique is widely used in machine learning to reduce overfitting when training machine learning models, achieved by training models on several slightly-modified copies of existing data.

The following outline is provided as an overview of and topical guide to machine learning:

Dynamic causal modeling (DCM) is a framework for specifying models, fitting them to data and comparing their evidence using Bayesian model comparison. It uses nonlinear state-space models in continuous time, specified using stochastic or ordinary differential equations. DCM was initially developed for testing hypotheses about neural dynamics. In this setting, differential equations describe the interaction of neural populations, which directly or indirectly give rise to functional neuroimaging data e.g., functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) or electroencephalography (EEG). Parameters in these models quantify the directed influences or effective connectivity among neuronal populations, which are estimated from the data using Bayesian statistical methods.

Shashi Shekhar is a leading scholar of spatial computing, spatial data science, and Geographic Information Systems (GIS). Contributions include scalable roadmap storage methods and algorithms for eco-routing, evacuation route planning, and spatial pattern mining, along with an Encyclopedia of GIS, a Spatial Databases textbook, and a spatial computing book for professionals. Currently, he is serving as a McKnight Distinguished University Professor, a Distinguished University Teaching Professor, ADC Chair and an Associate Director of the College of Science and Engineering Data Science Initiative at the University of Minnesota.

Alexander Stewart Fotheringham is a British-American geographer known for his contributions to quantitative geography and geographic information science (GIScience). He holds a Ph.D. in geography from McMaster University and is a Regents professor of computational spatial science in the School of Geographical Sciences and Urban Planning at Arizona State University. He has contributed to the literature surrounding spatial analysis and spatial statistics, particularly in the development of geographically weighted regression (GWR) and multiscale geographically weighted regression (MGWR).

References

  1. 1 2 3 4 5 6 Hagenauer J, Helbich M (2022). "A geographically weighted artificial neural network". International Journal of Geographical Information Science. 36 (2): 215–235. doi: 10.1080/13658816.2021.1871618 . S2CID   233883395.
  2. 1 2 Morer I, Cardillo A, Díaz-Guilera A, Prignano L, Lozano S (2020). "Comparing spatial networks: a one-size-fits-all efficiency-driven approach". Physical Review. 101 (4): 042301. doi:10.1103/PhysRevE.101.042301. hdl: 2445/161417 . PMID   32422764. S2CID   49564277.
  3. 1 2 Gupta J, Molnar C, Xie Y, Knight J, Shekhar S (2021). "Spatial variability aware deep neural networks (SVANN): a general approach". ACM Transactions on Intelligent Systems and Technology. 12 (6): 1–21. doi:10.1145/3466688. S2CID   244786699.
  4. 1 2 Openshaw S (1993). "Modelling spatial interaction using a neural net". In Fischer M, Nijkamp P (eds.). Geographic information systems, spatial modelling and policy evaluation. Berlin: Springer. pp. 147–164. doi:10.1007/978-3-642-77500-0_10. ISBN   978-3-642-77500-0.
  5. 1 2 Hewitson B, Crane R (1994). Neural nets: applications in geography. The GeoJournal Library. Vol. 29. Berlin: Springer. p. 196. doi:10.1007/978-94-011-1122-5. ISBN   978-94-011-1122-5.
  6. Openshaw S (1998). "Neural network, genetic, and fuzzy logic models of spatial interaction". Environment and Planning. 30 (10): 1857–1872. doi:10.1068/a301857. S2CID   14290821.
  7. Anselin L (2017). A local indicator of multivariate spatial association: extending Geary's C (PDF) (Report). Center for Spatial Data Science. p. 27.
  8. Fotheringham S, Sachdeva M (2021). "Modelling spatial processes in quantitative human geography". Annals of GIS. 28: 5–14. doi: 10.1080/19475683.2021.1903996 . S2CID   233574813.
  9. 1 2 Lu B, Hu Y, Yang D, Liu Y, Liao L, Yin Z, Xia T, Dong Z, Harris P, Brunsdon C, Comber A, Dong G (2023). "GWmodelS: A software for geographically weighted models" (PDF). SoftwareX. 21: 101291. doi:10.1016/j.softx.2022.101291.
  10. Xie Y, Chen W, He E, Jia X, Bao H, Zhou X, Ghosh E, Ravirathinam P (2023). "Harnessing heterogeneity in space with statistically guided meta-learning". Knowledge and Information Systems. 65 (6): 2699–2729. doi:10.1007/s10115-023-01847-0. PMC   9994417 . S2CID   257436979.
  11. Rif'an M, Daryanto D, Agung A (2019). "Spatial neural network for forecasting energy consumption of Palembang area". Journal of Physics: Conference Series. 1402 (3): 033092. doi: 10.1088/1742-6596/1402/3/033092 . S2CID   237302678.
  12. Podlipnov V, Firsov N, Ivliev N, Mashkov S, Ishkin P, Skidanov R, Nikonorov A (2023). "Spectral-spatial neural network classification of hyperspectral vegetation images". IOP conference series: earth and environmental science. Vol. 1138. doi: 10.1088/1755-1315/1138/1/012040 .
  13. Lin R, Ou C, Tseng K, Bowen D, Yung K, Ip W (2021). "The Spatial neural network model with disruptive technology for property appraisal in real estate industry". Technological Forecasting and Social Change. 177: 121067. doi:10.1016/j.techfore.2021.121067.