Energy industry

Last updated

The energy industry is the totality of all of the industries involved in the production and sale of energy, including fuel extraction, manufacturing, refining and distribution. Modern society consumes large amounts of fuel, and the energy industry is a crucial part of the infrastructure and maintenance of society in almost all countries.

Industry production of goods or service of a given field within an economy

An industry is the production of goods or related services within an economy. The major source of revenue of a group or company is the indicator of its relevant industry. When a large group has multiple sources of revenue generation, it is considered to be working in different industries. Manufacturing industry became a key sector of production and labour in European and North American countries during the Industrial Revolution, upsetting previous mercantile and feudal economies. This came through many successive rapid advances in technology, such as the production of steel and coal.

Energy quantitative physical property transferred to objects to perform heating or work on them

In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.

Fuel any material that stores energy that can later be extracted, in presence of a oxidizer or a catalyser, or under the effect of a tool, but which is not conserved after the reaction

A fuel is any material that can be made to react with other substances so that it releases energy as heat energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy such as nuclear energy.

Contents

In particular, the energy industry comprises:

Petroleum industry activities linked to handling oil and gas products

The petroleum industry, also known as the oil industry or the oil patch, includes the global processes of exploration, extraction, refining, transporting, and marketing of petroleum products. The largest volume products of the industry are fuel oil and gasoline (petrol). Petroleum (oil) is also the raw material for many chemical products, including pharmaceuticals, solvents, fertilizers, pesticides, synthetic fragrances, and plastics. The extreme monetary value of oil and its products has led to it being known as "black gold". The industry is usually divided into three major components: upstream, midstream, and downstream.

Natural gas fossil fuel

Natural gas, also called "Fossil Gas" is a naturally occurring hydrocarbon gas mixture consisting primarily of methane, but commonly including varying amounts of other higher alkanes, and sometimes a small percentage of carbon dioxide, nitrogen, hydrogen sulfide, or helium. It is formed when layers of decomposing plant and animal matter are exposed to intense heat and pressure under the surface of the Earth over millions of years. The energy that the plants originally obtained from the sun is stored in the form of chemical bonds in the gas.

Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities.

Energy consumption in kilograms of oil equivalent (kgoe) per person per year per country (2001 data). Darker tones indicate larger consumption, while dark grey areas are missing from the dataset. Red hue indicates increasing consumption, green hue indicates decreasing consumption, in the time between 1990 and 2001. Energy per capita.png
Energy consumption in kilograms of oil equivalent (kgoe) per person per year per country (2001 data). Darker tones indicate larger consumption, while dark grey areas are missing from the dataset. Red hue indicates increasing consumption, green hue indicates decreasing consumption, in the time between 1990 and 2001.

History

The use of energy has been a key in the development of the human society by helping it to control and adapt to the environment. Managing the use of energy is inevitable in any functional society. In the industrialized world the development of energy resources has become essential for agriculture, transportation, waste collection, information technology, communications that have become prerequisites of a developed society. The increasing use of energy since the Industrial Revolution has also brought with it a number of serious problems, some of which, such as global warming, present potentially grave risks to the world.

Society Social group involved in persistent social interaction

A society is a group of individuals involved in persistent social interaction, or a large social group sharing the same geographical or social territory, typically subject to the same political authority and dominant cultural expectations. Societies are characterized by patterns of relationships between individuals who share a distinctive culture and institutions; a given society may be described as the sum total of such relationships among its constituent of members. In the social sciences, a larger society often exhibits stratification or dominance patterns in subgroups.

Agriculture Cultivation of plants and animals to provide useful products

Agriculture is the science and art of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. The history of agriculture began thousands of years ago. After gathering wild grains beginning at least 105,000 years ago, nascent farmers began to plant them around 11,500 years ago. Pigs, sheep and cattle were domesticated over 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. Industrial agriculture based on large-scale monoculture in the twentieth century came to dominate agricultural output, though about 2 billion people still depended on subsistence agriculture into the twenty-first.

Transport Human-directed movement of things or people between locations

Transport or transportation is the movement of humans, animals and goods from one location to another. In other words the action of transport is defined as a particular movement of an organism or thing from a point A to the Point B. Modes of transport include air, land, water, cable, pipeline and space. The field can be divided into infrastructure, vehicles and operations. Transport is important because it enables trade between people, which is essential for the development of civilizations.

In some industries, the word energy is used as a synonym of energy resources, which refer to substances like fuels, petroleum products and electricity in general, because a significant portion of the energy contained in these resources can easily be extracted to serve a useful purpose. After a useful process has taken place, the total energy is conserved, but the resource itself is not conserved, since a process usually transforms the energy into unusable forms (such as unnecessary or excess heat).

Energy development

Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include production of conventional, alternative and renewable sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.

Electricity Physical phenomena associated with the presence and flow of electric charge

Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. In early days, electricity was considered as being not related to magnetism. Later on, many experimental results and the development of Maxwell's equations indicated that both electricity and magnetism are from a single phenomenon: electromagnetism. Various common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

Ever since humanity discovered various energy resources available in nature, it has been inventing devices, known as machines, that make life more comfortable by using energy resources. Thus, although the primitive man knew the utility of fire to cook food, the invention of devices like gas burners and microwave ovens has increased the usage of energy for this purpose alone manyfold. The trend is the same in any other field of social activity, be it construction of social infrastructure, manufacturing of fabrics for covering; porting; printing; decorating, for example textiles, air conditioning; communication of information or for moving people and goods (automobiles).

Construction Process of the building or assembling of a building or infrastructure

Construction is the process of constructing a building or infrastructure. Construction differs from manufacturing in that manufacturing typically involves mass production of similar items without a designated purchaser, while construction typically takes place on location for a known client. Construction as an industry comprises six to nine percent of the gross domestic product of developed countries. Construction starts with planning, design, and financing; it continues until the project is built and ready for use.

Printing process for reproducing text and images, typically with ink on paper using a printing press

Printing is a process for reproducing text and images using a master form or template. The earliest non-paper products involving printing include cylinder seals and objects such as the Cyrus Cylinder and the Cylinders of Nabonidus. The earliest known form of printing as applied to paper was woodblock printing, which appeared in China before 220 AD. Later developments in printing technology include the movable type invented by Bi Sheng around 1040 AD and the printing press invented by Johannes Gutenberg in the 15th century. The technology of printing played a key role in the development of the Renaissance and the scientific revolution, and laid the material basis for the modern knowledge-based economy and the spread of learning to the masses.

Air conditioning Process of altering the properties of air to more favourable conditions

Air conditioning is the process of removing heat and moisture from the interior of an occupied space, to improve the comfort of occupants. Air conditioning can be used in both domestic and commercial environments. This process is most commonly used to achieve a more comfortable interior environment, typically for humans and other animals; however, air conditioning is also used to cool/dehumidify rooms filled with heat-producing electronic devices, such as computer servers, power amplifiers, and even to display and store some delicate products, such as artwork.

Energy industry

Economics

Production and consumption of energy resources is very important to the global economy. All economic activity requires energy resources, whether to manufacture goods, provide transportation, run computers and other machines.

Manufacturing industrial activity producing goods for sale using labor and machines

Manufacturing is the production of products for use or sale using labour and machines, tools, chemical and biological processing, or formulation. The term may refer to a range of human activity, from handicraft to high tech, but is most commonly applied to industrial design, in which raw materials are transformed into finished goods on a large scale. Such finished goods may be sold to other manufacturers for the production of other, more complex products, such as aircraft, household appliances, furniture, sports equipment or automobiles, or sold to wholesalers, who in turn sell them to retailers, who then sell them to end users and consumers.

A computer is a machine that can be instructed to carry out sequences of arithmetic or logical operations automatically via computer programming. Modern computers have the ability to follow generalized sets of operations, called programs. These programs enable computers to perform an extremely wide range of tasks. A "complete" computer including the hardware, the operating system, and peripheral equipment required and used for "full" operation can be referred to as a computer system. This term may as well be used for a group of computers that are connected and work together, in particular a computer network or computer cluster.

Machine tool using energy to perform an intended action

A machine is a mechanical structure that uses power to apply forces and control movement to perform an intended action. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.

Widespread demand for energy may encourage competing energy utilities and the formation of retail energy markets. Note the presence of the "Energy Marketing and Customer Service" (EMACS) sub-sector. [1]

The energy sector accounts for 4.6% of outstanding leveraged loans, compared with 3.1% a decade ago, while energy bonds make up 15.7% of the $1.3  trillion junk bond market, up from 4.3% over the same period. [2]

Management

Since the cost of energy has become a significant factor in the performance of economy of societies, management of energy resources has become very crucial. Energy management involves utilizing the available energy resources more effectively that is with minimum incremental costs. Many times it is possible to save expenditure on energy without incorporating fresh technology by simple management techniques. [3] Most often energy management is the practice of using energy more efficiently by eliminating energy wastage or to balance justifiable energy demand with appropriate energy supply. The process couples energy awareness with energy conservation.

Classifications

Government

The United Nations developed the International Standard Industrial Classification, which is a list of economic and social classifications. [4] There is no distinct classification for an energy industry, because the classification system is based on activities, products, and expenditures according to purpose. [5]

Countries in North America use the North American Industry Classification System (NAICS). The NAICS sectors #21 and #22 (mining and utilities) might roughly define the energy industry in North America. This classification is used by the U.S. Securities and Exchange Commission.

Financial market

The Global Industry Classification Standard used by Morgan Stanley define the energy industry as comprising companies primarily working with oil, gas, coal and consumable fuels, excluding companies working with certain industrial gases. [6] Add also to expand this section: Dow Jones Industrial Average [7]

Environmental impact

Government encouragement in the form of subsidies and tax incentives for energy-conservation efforts has increasingly fostered the view of conservation as a major function of the energy industry: saving an amount of energy provides economic benefits almost identical to generating that same amount of energy. This is compounded by the fact that the economics of delivering energy tend to be priced for capacity as opposed to average usage. One of the purposes of a smart grid infrastructure is to smooth out demand so that capacity and demand curves align more closely. Some parts of the energy industry generate considerable pollution, including toxic and greenhouse gases from fuel combustion, nuclear waste from the generation of nuclear power, and oil spillages as a result of petroleum extraction. Government regulations to internalize these externalities form an increasing part of doing business, and the trading of carbon credits and pollution credits on the free market may also result in energy-saving and pollution-control measures becoming even more important to energy providers.

Consumption of energy resources, (e.g. turning on a light) requires resources and has an effect on the environment. Many electric power plants burn coal, oil or natural gas in order to generate electricity for energy needs. While burning these fossil fuels produces a readily available and instantaneous supply of electricity, it also generates air pollutants including carbon dioxide (CO2), sulfur dioxide and trioxide (SOx) and nitrogen oxides (NOx). Carbon dioxide is an important greenhouse gas which is thought to be responsible for some fraction of the rapid increase in climate change seen especially in the temperature records in the 20th century, as compared with tens of thousands of years worth of temperature records which can be read from ice cores taken in Arctic regions. Burning fossil fuels for electricity generation also releases trace metals such as beryllium, cadmium, chromium, copper, manganese, mercury, nickel, and silver into the environment, which also act as pollutants.

The large-scale use of renewable energy technologies would "greatly mitigate or eliminate a wide range of environmental and human health impacts of energy use". [8] [9] Renewable energy technologies include biofuels, solar heating and cooling, hydroelectric power, solar power, and wind power. Energy conservation and the efficient use of energy would also help.

In addition, it is argued that there is also the potential to develop a more efficient energy sector. This can be done by: [10]

Best available technology (BAT) offers supply-side efficiency levels far higher than global averages. The relative benefits of gas compared to coal are influenced by the development of increasingly efficient energy production methods. According to an impact assessment carried out for the European Commission, the levels of energy efficiency of coal-fired plants built have now increased to 46-49% efficiency rates, as compared to coals plants built before the 1990s (32-40%). [11] However, at the same time gas can reach 58-59% efficiency levels with the best available technology. [11] Meanwhile, combined heat and power can offer efficiency rates of 80-90%. [11]

Politics

Since now energy plays an essential role in industrial societies, the ownership and control of energy resources plays an increasing role in politics. At the national level, governments seek to influence the sharing (distribution) of energy resources among various sections of the society through pricing mechanisms; or even who owns resources within their borders. They may also seek to influence the use of energy by individuals and business in an attempt to tackle environmental issues.

The most recent international political controversy regarding energy resources is in the context of the Iraq Wars. Some political analysts maintain that the hidden reason for both 1991 and 2003 wars can be traced to strategic control of international energy resources. [12] Others counter this analysis with the numbers related to its economics. According to the latter group of analysts, U.S. has spent about $336 billion in Iraq [13] as compared with a background current value of $25 billion per year budget for the entire U.S. oil import dependence [14]

Policy

Energy policy is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy production, distribution and consumption. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques.

Security

Energy security is the intersection of national security and the availability of natural resources for energy consumption. Access to cheap energy has become essential to the functioning of modern economies. However, the uneven distribution of energy supplies among countries has led to significant vulnerabilities. Threats to energy security include the political instability of several energy producing countries, the manipulation of energy supplies, the competition over energy sources, attacks on supply infrastructure, as well as accidents, natural disasters, the funding to foreign dictators, rising terrorism, and dominant countries reliance to the foreign oil supply. [15] The limited supplies, uneven distribution, and rising costs of fossil fuels, such as oil and gas, create a need to change to more sustainable energy sources in the foreseeable future. With as much dependence that the U.S. currently has for oil and with the peaking limits of oil production; economies and societies will begin to feel the decline in the resource that we have become dependent upon. Energy security has become one of the leading issues in the world today as oil and other resources have become as vital to the world's people. However, with oil production rates decreasing and oil production peak nearing the world has come to protect what resources we have left in the world. With new advancements in renewable resources less pressure has been put on companies that produce the world's oil, these resources are, geothermal, solar power, wind power and hydro-electric. Although these are not all the current and possible future options for the world to turn to as the oil depletes the most important issue is protecting these vital resources from future threats. These new resources will become more useful as the price of exporting and importing oil will increase due to increase of demand.

Development

Producing energy to sustain human needs is an essential social activity, and a great deal of effort goes into the activity. While most of such effort is limited towards increasing the production of electricity and oil, newer ways of producing usable energy resources from the available energy resources are being explored. One such effort is to explore means of producing hydrogen fuel from water. Though hydrogen use is environmentally friendly, its production requires energy and existing technologies to make it, are not very efficient. Research is underway to explore enzymatic decomposition of biomass. [16]

Other forms of conventional energy resources are also being used in new ways. Coal gasification and liquefaction are recent technologies that are becoming attractive after the realization that oil reserves, at present consumption rates, may be rather short lived. See alternative fuels.

Energy is the subject of significant research activities globally. For example, the UK Energy Research Centre is the focal point for UK energy research while the European Union has many technology programmes as well as a platform for engaging social science and humanities within energy research. [17]

Transportation

All societies require materials and food to be transported over distances, generally against some force of friction. Since application of force over distance requires the presence of a source of usable energy, such sources are of great worth in society.

While energy resources are an essential ingredient for all modes of transportation in society, the transportation of energy resources is becoming equally important. Energy resources are frequently located far from the place where they are consumed. Therefore, their transportation is always in question. Some energy resources like liquid or gaseous fuels are transported using tankers or pipelines, while electricity transportation invariably requires a network of grid cables. The transportation of energy, whether by tanker, pipeline, or transmission line, poses challenges for scientists and engineers, policy makers, and economists to make it more risk-free and efficient.

Crisis

Oil prices from 1861 to 2007 Oil Prices Since 1861.svg
Oil prices from 1861 to 2007

Economic and political instability can lead to an energy crisis. Notable oil crises are the 1973 oil crisis and the 1979 oil crisis. The advent of peak oil, the point in time when the maximum rate of global petroleum extraction is reached, will likely precipitate another energy crisis.

Mergers and Acquisitions

Between 1985 and 2018 there have been around 69,932 deals in the energy sector. This cumulates to an overall value of 9,578 bil USD. The most active year was 2010 with about 3.761 deals. In terms of value 2007 was the strongest year (684 bil. USD), which was followed by a steep decline until 2009 (-55,8%). [18]

Here is a list of the top 10 deals in history in the energy sector:

Date AnnouncedAcquiror NameAcquiror Mid IndustryAcquiror NationTarget NameTarget Mid IndustryTarget NationValue of Transaction ($mil)
12/01/1998Exxon CorpOil & GasUnited StatesMobil CorpOil & GasUnited States78,945.79
10/28/2004Royal Dutch Petroleum CoOil & GasNetherlandsShell Transport & Trading CoOil & GasUnited Kingdom74,558.58
04/08/2015Royal Dutch Shell PLCPetrochemicalsNetherlandsBG Group PLCOil & GasUnited Kingdom69,445.02
02/25/2006Gaz de France SAOil & GasFranceSuez SAPowerFrance60,856.45
07/05/1999Total Fina SAOil & GasFranceElf AquitaineOil & GasFrance50,070.05
08/11/1998British Petroleum Co PLCOil & GasUnited KingdomAmoco CorpOil & GasUnited States48,174.09
09/01/2010PetrobrasOil & GasBrazilBrazil-Oil & Gas BlocksOil & GasBrazil42,877.03
10/16/2000Chevron CorpPetrochemicalsUnited StatesTexaco IncPetrochemicalsUnited States42,872.30
06/20/2000Vivendi SAWater and Waste ManagementFranceSeagram Co LtdMotion Pictures / Audio VisualCanada40,428.19
12/14/2009Exxon Mobil CorpPetrochemicalsUnited StatesXTO Energy IncOil & GasUnited States40,298.14

See also

Related Research Articles

Fossil fuel fuel formed by natural processes such as anaerobic decomposition of buried dead organisms

A fossil fuel is a fuel formed by natural processes, such as anaerobic decomposition of buried dead organisms, containing energy originating in ancient photosynthesis. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include petroleum, coal, and natural gas. Other commonly used derivatives include kerosene and propane. Fossil fuels range from volatile materials with low carbon to hydrogen ratios like methane, to liquids like petroleum, to nonvolatile materials composed of almost pure carbon, like anthracite coal. Methane can be found in hydrocarbon fields either alone, associated with oil, or in the form of methane clathrates.

Energy policy is the manner in which a given entity has decided to address issues of energy development including energy production, distribution and consumption. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques. Energy is a core component of modern economies. A functioning economy requires not only labor and capital but also energy, for manufacturing processes, transportation, communication, agriculture, and more.

National Energy Technology Laboratory

The National Energy Technology Laboratory (NETL) is a U.S. national laboratory under the Department of Energy Office of Fossil Energy. NETL focuses on applied research for the clean production and use of domestic energy resources. NETL performs research and development on the supply, efficiency, and environmental constraints of producing and using fossil energy resources, while maintaining their affordability.

Energy policy of the United States Where and how the United States gets electrical and other power

The energy policy of the United States is determined by federal, state, and local entities in the United States, which address issues of energy production, distribution, and consumption, such as building codes and gas mileage standards. Energy policy may include legislation, international treaties, subsidies and incentives to investment, guidelines for energy conservation, taxation and other public policy techniques.

Energy in Taiwan

Taiwan relies on imports for more than 99.23% of its energy in 2008, which leaves the island's energy supply vulnerable to external disruption. In order to reduce this dependence, the Ministry of Economic Affairs' Bureau of Energy has been actively promoting energy research at several universities since the 1990s.

The current energy policy of the United Kingdom is set out in the Energy White Paper of May 2007 and Low Carbon Transition Plan of July 2009, building on previous work including the 2003 Energy White Paper and the Energy Review Report in 2006. It was led by the Department of Energy and Climate Change, then headed by Amber Rudd. The current focus of policy are on reforming the electricity market, rolling out smart meters and improving the energy efficiency of the UK building stock through the Green Deal.

The United States was the second-largest energy consumer in 2010 after China. The country is ranked seventh in energy consumption per capita after Canada and several small nations. Not included is the significant amount of energy used overseas in the production of retail and industrial goods consumed in the United States.

The energy policy of India is largely defined by the country's expanding energy deficit and increased focus on developing alternative sources of energy, particularly nuclear, solar and wind energy. India ranks 81 position in overall energy self-sufficiency at 66% in 2014.

A low-carbon economy (LCE), low-fossil-fuel economy (LFFE), or decarbonised economy is an economy based on low carbon power sources that therefore has a minimal output of greenhouse gas (GHG) emissions into the biosphere, but specifically refers to the greenhouse gas carbon dioxide. GHG emissions due to anthropogenic (human) activity are the dominant cause of observed global warming since the mid-20th century. Continued emission of greenhouse gases may cause long-lasting changes around the world, increasing the likelihood of severe, pervasive and irreversible impacts for people and ecosystems.

World energy consumption energy consumption at international lvel

World energy consumption is the total energy used by the entire human civilization. Typically measured per year, it involves all energy harnessed from every energy source applied towards humanity's endeavours across every single industrial and technological sector, across every country. It does not include energy from food, and the extent to which direct biomass burning has been accounted for is poorly documented. Being the power source metric of civilization, World Energy Consumption has deep implications for humanity's socio-economic-political sphere.

Energy security National security considerations of energy availability

Energy security is the association between national security and the availability of natural resources for energy consumption. Access to (relatively) cheap energy has become essential to the functioning of modern economies. However, the uneven distribution of energy supplies among countries has led to significant vulnerabilities. International energy relations have contributed to the globalization of the world leading to energy security and energy vulnerability at the same time.

Mitigation of peak oil

The mitigation of peak oil is the attempt to delay the date and minimize the social and economic effects of peak oil by reducing the consumption of and reliance on petroleum. By reducing petroleum consumption, mitigation efforts seek to favorably change the shape of the Hubbert curve, which is the graph of real oil production over time predicted by Hubbert peak theory. The peak of this curve is known as peak oil, and by changing the shape of the curve, the timing of the peak in oil production is affected. An analysis by the author of the Hirsch report showed that while the shape of the oil production curve can be affected by mitigation efforts, mitigation efforts are also affected by the shape of Hubbert curve.

Renewable energy in China

China is the world's leading country in electricity production from renewable energy sources, with over double the generation of the second-ranking country, the United States. In 2013 the country had a total capacity of 378 GW of renewable power, mainly from hydroelectric and wind power. China's renewable energy sector is growing faster than its fossil fuels and nuclear power capacity.

Energy in New Zealand

Despite abundant natural resources and a relatively small population, New Zealand is a net importer of energy, in the form of petroleum products. The ratio of non-renewable and renewable energy sources was fairly consistent from 1975 to 2008, with about 70 percent of primary energy supply coming from hydrocarbon fuels. This ratio decreased to about 60 percent in 2014. The proportion of non-renewable energy varies annually, depending on water flows into hydro-electricity lakes and demand for energy. In 2014, approximately 60% of primary energy was from non-renewable hydrocarbon fuels and 40% was from renewable sources. In 2007 energy consumption per capita was 120 gigajoules. Per capita energy consumption had increased 8 per cent since 1998. New Zealand uses more energy per capita than 17 of 30 OECD countries. New Zealand is one of 13 OECD countries that does not operate nuclear power stations.

Electricity sector in Ghana

Ghana generates electric power from hydropower, fossil-fuel, and renewable energy sources. Electricity generation is one of the key factors in order to achieve the development of the Ghanaian national economy, with aggressive and rapid industrialisation; Ghana's national electric energy consumption was 265 kilowatt hours per capita in 2009.

Energy in Finland

Energy in Finland describes energy and electricity production, consumption and import in Finland. Energy policy of Finland describes the politics of Finland related to energy. Electricity sector in Finland is the main article of electricity in Finland.

The energy policy of Malaysia is determined by the Malaysian Government, which address issues of energy production, distribution, and consumption. The Department of Electricity and Gas Supply acts as the regulator while other players in the energy sector include energy supply and service companies, research and development institutions and consumers. Government-linked companies Petronas and Tenaga Nasional Berhad are major players in Malaysia's energy sector.

The energy policy of the Soviet Union was an important feature of the country's planned economy from the time of Lenin onward. The Soviet Union was virtually a self-sufficient energy nation; the development of the energy sector started with Stalin's autarky policy. During the country's 70 years of existence, the primary way of securing economic growth were based on large inputs of natural resources. But by the 1960s, this method was less efficient. In contrast to other nations who shared the same experience, technological innovation was not strong enough to replace the energy sector in importance.

Energy in Turkey

Turkey consumes over 6 exajoules of primary energy per year, over 20 megawatt hours (MW/h) per person. 88% of energy is fossil fuels and the energy policy of Turkey includes reducing fossil fuel imports, which are a quarter of import costs. As of 2016 greenhouse gas emissions by Turkey were 6.3 tons/person year, more than the global average.

References

  1. Allen, J (1998). "Emacs ushers in customer-, marketing-driven industry". Electrical World. 212 (3): 41–43. ISSN   0013-4457 . Retrieved 13 October 2010. The Energy Marketing and Customer Service (EMACS) conference/exhibition focuses exclusively on the selling of energy in competitive retail markets.
  2. Alloway, Tracy (26 November 2014). "Oil price fall starts to weigh on banks". ft.com. Retrieved 27 November 2014.
  3. Energy Management :: MEPoL Archived 25 March 2008 at the Wayback Machine
  4. United Nations economic and social classifications Accessed 6 April 2007.
  5. United Nations Available Classifications Accessed 6 April 2007.
  6. MSCI-Barra GICS Tables Accessed 6 April 2007.
  7. Industry Classification Benchmark for Dow Jones Indexes (United States) and FTSE Indexes (United Kingdom) (pdf)
  8. Jacobson, Mark Z.; Delucchi, Mark A. (2010). "Providing all Global Energy with Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials" (PDF). Energy policy.[ permanent dead link ]
  9. Kuli Aye. "Energie vergelijken switchen Energieleverancier top 10". Energie vergelijken (in Dutch). Retrieved 28 October 2016.
  10. European Movement for Efficient Energy 2011. Energy efficient solutions for the conservation of energy. Retrieved: 11 October 2011 18:52
  11. 1 2 3 European Commission 2011. Impact Assessment Accompanying the document Directive of the European Parliament and of the Council on energy efficiency and amending and subsequently repealing Directives 2004/8/EC and 2006/32/EC. p. 106 Retrieved 11 October 2011 19:01
  12. "Archived copy". Archived from the original on 19 April 2012. Retrieved 6 June 2011.CS1 maint: Archived copy as title (link) Oil and Empire - the backstory to the invasion of Iraq
  13. The War in Iraq Costs Archived 12 October 2005 at the Wayback Machine , A running total of the U.S. taxpayer cost to date of the Iraq War. The number is based on Congressional appropriations.
  14. Gibson Consulting US OIL DEMAND, 2004.
  15. "Power plays: Energy and Australia's security". Aspi.org.au. Archived from the original on 11 August 2010. Retrieved 1 June 2010.
  16. "Virginia Tech Deans' Task Force on Energy Security and Sustainability". Archived from the original on 8 April 2011. Retrieved 6 June 2011.
  17. "H2020 SHAPE-Energy".
  18. "M&A by Industries - Institute for Mergers, Acquisitions and Alliances (IMAA)". Institute for Mergers, Acquisitions and Alliances (IMAA). Retrieved 27 February 2018.

Further reading