Spilanthol

Last updated
Spilanthol
Spilanthol skeletal.svg
Names
Preferred IUPAC name
(2E,6Z,8E)-N-(2-Methylpropyl)deca-2,6,8-trienamide
Other names
Affinin
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C14H23NO/c1-4-5-6-7-8-9-10-11-14(16)15-12-13(2)3/h4-7,10-11,13H,8-9,12H2,1-3H3,(H,15,16)/b5-4+,7-6-,11-10+
    Key: BXOCHUWSGYYSFW-HVWOQQCMSA-N
  • InChI=1/C14H23NO/c1-4-5-6-7-8-9-10-11-14(16)15-12-13(2)3/h4-7,10-11,13H,8-9,12H2,1-3H3,(H,15,16)/b5-4+,7-6-,11-10+
    Key: BXOCHUWSGYYSFW-HVWOQQCMBC
  • O=C(/C=C/CC/C=C\C=C\C)NCC(C)C
Properties
C14H23NO
Molar mass 221.344 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Spilanthol (affinin) is a fatty acid amide isolated from Acmella oleracea . [1] It is believed to be responsible for the local anesthetic properties of the plant. [2]

Spilanthol permeates the human skin [3] and the inside lining of the cheeks in the mouth (buccal mucosa), [4] resulting in local as well as systemic pharmacological concentrations. In the skin and in the pancreas, spilanthol has also been shown to exert anti-inflammatory effects. [5] The underlying mechanism involves inhibition of nitric oxide production due to reduced expression of inducible nitric oxide synthase enzyme (iNOS) in macrophages. Transcription factor array experiments revealed that spilanthol inhibits the activation of several transcription factors (NFκB, ATF4, FOXO1, IRF1, ETS1, and AP-1) which may explain the effect of spilanthol on gene expression. [5]

The antihypertensive effect of spilanthol was blocked by CB1 antagonist rimonabant and TRPV1 antagonist capsazepine, suggesting spilanthol mediates some activity by interaction with the cannabinoid receptors and TRPV1 channels. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Cannabinoid</span> Compounds found in cannabis

Cannabinoids are several structural classes of compounds found in the cannabis plant primarily and most animal organisms or as synthetic compounds. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC) (delta-9-THC), the primary psychoactive compound in cannabis. Cannabidiol (CBD) is also a major constituent of temperate cannabis plants and a minor constituent in tropical varieties. At least 113 distinct phytocannabinoids have been isolated from cannabis, although only four have been demonstrated to have a biogenetic origin. It was reported in 2020 that phytocannabinoids can be found in other plants such as rhododendron, licorice and liverwort, and earlier in Echinacea.

<span class="mw-page-title-main">Glucocorticoid</span> Class of corticosteroids

Glucocorticoids are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every vertebrate animal cell. The name "glucocorticoid" is a portmanteau and is composed from its role in regulation of glucose metabolism, synthesis in the adrenal cortex, and its steroidal structure.

<span class="mw-page-title-main">Lipoxin</span> Acronym for lipoxygenase interaction product

A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediators (SPMs) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during, and then act to resolve, inflammatory responses. Initially, two lipoxins were identified, lipoxin A4 (LXA4) and LXB4, but more recent studies have identified epimers of these two LXs: the epi-lipoxins, 15-epi-LXA4 and 15-epi-LXB4 respectively.

<span class="mw-page-title-main">Cannabinol</span> Naturally-occurring cannabinoid

Cannabinol (CBN) is a mildly psychoactive cannabinoid that acts as a low affinity partial agonist at both CB1 and CB2 receptors. This activity at CB1 and CB2 receptors constitutes interaction of CBN with the endocannabinoid system (ECS).

<span class="mw-page-title-main">WIN 55,212-2</span> Chemical compound

WIN 55,212-2 is a chemical described as an aminoalkylindole derivative, which produces effects similar to those of cannabinoids such as tetrahydrocannabinol (THC) but has an entirely different chemical structure.

<span class="mw-page-title-main">Endocannabinoid system</span> Biological system of neurotransmitters

The endocannabinoid system (ECS) is a biological system composed of endocannabinoids, which are endogenous lipid-based retrograde neurotransmitters that bind to cannabinoid receptors, and cannabinoid receptor proteins that are expressed throughout the vertebrate central nervous system and peripheral nervous system. The endocannabinoid system remains under preliminary research, but may be involved in regulating physiological and cognitive processes, including fertility, pregnancy, pre- and postnatal development, various activity of immune system, appetite, pain-sensation, mood, and memory, and in mediating the pharmacological effects of cannabis. The ECS plays an important role in multiple aspects of neural functions, including the control of movement and motor coordination, learning and memory, emotion and motivation, addictive-like behavior and pain modulation, among others.

<span class="mw-page-title-main">Alveolar macrophage</span>

An alveolar macrophage, pulmonary macrophage, is a type of macrophage, a professional phagocyte, found in the airways and at the level of the alveoli in the lungs, but separated from their walls.

<span class="mw-page-title-main">TRPV1</span> Human protein for regulating body temperature

The transient receptor potential cation channel subfamily V member 1 (TRPV1), also known as the capsaicin receptor and the vanilloid receptor 1, is a protein that, in humans, is encoded by the TRPV1 gene. It was the first isolated member of the transient receptor potential vanilloid receptor proteins that in turn are a sub-family of the transient receptor potential protein group. This protein is a member of the TRPV group of transient receptor potential family of ion channels. Fatty acid metabolites with affinity for this receptor are produced by cyanobacteria, which diverged from eukaryotes at least 2000 million years ago (MYA). The function of TRPV1 is detection and regulation of body temperature. In addition, TRPV1 provides a sensation of scalding heat and pain (nociception). In primary afferent sensory neurons, it cooperates with TRPA1 to mediate the detection of noxious environmental stimuli.

<span class="mw-page-title-main">AM404</span> Active metabolite of paracetamol

AM404, also known as N-arachidonoylphenolamine, is an active metabolite of paracetamol (acetaminophen), responsible for all or part of its analgesic action and anticonvulsant effects. Chemically, it is the amide formed from 4-aminophenol and arachidonic acid.

<span class="mw-page-title-main">Cannabinoid receptor 1</span> Mammalian protein found in Homo sapiens

Cannabinoid receptor 1 (CB1), is a G protein-coupled cannabinoid receptor that in humans is encoded by the CNR1 gene. The human CB1 receptor is expressed in the peripheral nervous system and central nervous system. It is activated by endogenous cannabinoids called endocannabinoids, a group of retrograde neurotransmitters that include lipids, such as anandamide and 2-arachidonoylglycerol (2-AG); plant phytocannabinoids, such as docosatetraenoylethanolamide found in wild daga, the compound THC which is an active constituent of the psychoactive drug cannabis; and synthetic analogs of THC. CB1 is antagonized by the phytocannabinoid tetrahydrocannabivarin (THCV).

<span class="mw-page-title-main">Cannabinoid receptor 2</span> Mammalian protein found in Homo sapiens

The cannabinoid receptor 2(CB2), is a G protein-coupled receptor from the cannabinoid receptor family that in humans is encoded by the CNR2 gene. It is closely related to the cannabinoid receptor 1 (CB1), which is largely responsible for the efficacy of endocannabinoid-mediated presynaptic-inhibition, the psychoactive properties of tetrahydrocannabinol (THC), the active agent in cannabis, and other phytocannabinoids. The principal endogenous ligand for the CB2 receptor is 2-Arachidonoylglycerol (2-AG).

<i>N</i>-Arachidonoyl dopamine Chemical compound

N-Arachidonoyl dopamine (NADA) is an endocannabinoid that acts as an agonist of the CB1 receptor and the transient receptor potential V1 (TRPV1) ion channel. NADA was first described as a putative endocannabinoid (agonist for the CB1 receptor) in 2000 and was subsequently identified as an endovanilloid (agonist for TRPV1) in 2002. NADA is an endogenous arachidonic acid based lipid found in the brain of rats, with especially high concentrations in the hippocampus, cerebellum, and striatum. It activates the TRPV1 channel with an EC50 of approximately of 50 nM which makes it the putative endogenous TRPV1 agonist.

<i>N</i>-Acylethanolamine Class of chemical compounds

An N-acylethanolamine (NAE) is a type of fatty acid amide where one of several types of acyl groups is linked to the nitrogen atom of ethanolamine, and highly metabolic formed by intake of essential fatty acids through diet by 20:4, n-6 and 22:6, n-3 fatty acids, and when the body is physically and psychologically active,. The endocannabinoid signaling system (ECS) is the major pathway by which NAEs exerts its physiological effects in animal cells with similarities in plants, and the metabolism of NAEs is an integral part of the ECS, a very ancient signaling system, being clearly present from the divergence of the protostomian/deuterostomian, and even further back in time, to the very beginning of bacteria, the oldest organisms on Earth known to express phosphatidylethanolamine, the precursor to endocannabinoids, in their cytoplasmic membranes. Fatty acid metabolites with affinity for CB receptors are produced by cyanobacteria, which diverged from eukaryotes at least 2000 Million years ago (MYA), by brown algae which diverged about 1500 MYA, by sponges, which diverged from eumetazoans about 930 MYA, and a lineages that predate the evolution of CB receptors, as CB1 – CB2 duplication event may have occurred prior to the lophotrochozoan-deuterostome divergence 590 MYA. Fatty acid amide hydrolase (FAAH) evolved relatively recently, either after the evolution of fish 400 MYA, or after the appearance of mammals 300 MYA, but after the appearance of vertebrates. Linking FAAH, vanilloid receptors (VR1) and anandamide implies a coupling among the remaining ‘‘older’’ parts of the endocannabinoid system, monoglyceride lipase (MGL), CB receptors, that evolved prior to the metazoan–bilaterian divergence, but were secondarily lost in the Ecdysozoa, and 2-Arachidonoylglycerol (2-AG).

Palmitoylethanolamide (PEA) is an endogenous fatty acid amide, and lipid modulator.

<span class="mw-page-title-main">SR-144,528</span> Chemical compound

SR144528 is a drug that acts as a potent and highly selective CB2 receptor inverse agonist, with a Ki of 0.6 nM at CB2 and 400 nM at the related CB1 receptor. It is used in scientific research for investigating the function of the CB2 receptor, as well as for studying the effects of CB1 receptors in isolation, as few CB1 agonists that do not also show significant activity as CB2 agonists are available. It has also been found to be an inhibitor of sterol O-acyltransferase, an effect that appears to be independent from its action on CB2 receptors.

<span class="mw-page-title-main">LASSBio-881</span> Chemical compound

LASSBio-881 is a drug which acts as both a non-selective partial agonist of the CB1 and CB2 cannabinoid receptors, and also as an antagonist of the TRPV1 receptor, as well as having antioxidant effects. It has potent anti-inflammatory and anti-hyperalgesic effects in animal studies.

<span class="mw-page-title-main">Tetrahydrocannabinolic acid</span> THC precursor

Tetrahydrocannabinolic acid is a precursor of tetrahydrocannabinol (THC), an active component of cannabis.

Regulatory macrophages (Mregs) represent a subset of anti-inflammatory macrophages. In general, macrophages are a very dynamic and plastic cell type and can be divided into two main groups: classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 group can further be divided into sub-groups M2a, M2b, M2c, and M2d. Typically the M2 cells have anti-inflammatory and regulatory properties and produce many different anti-inflammatory cytokines such as IL-4, IL-33, IL-10, IL-1RA, and TGF-β. M2 cells can also secrete angiogenic and chemotactic factors. These cells can be distinguished based on the different expression levels of various surface proteins and the secretion of different effector molecules.

<span class="mw-page-title-main">13-Hydroxyoctadecadienoic acid</span> Chemical compound

13-Hydroxyoctadecadienoic acid (13-HODE) is the commonly used term for 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13(S)-HODE). The production of 13(S)-HODE is often accompanied by the production of its stereoisomer, 13(R)-hydroxy-9Z,11E-octadecadienoic acid (13(R)-HODE). The adjacent figure gives the structure for the (S) stereoisomer of 13-HODE. Two other naturally occurring 13-HODEs that may accompany the production of 13(S)-HODE are its cis-trans (i.e., 9E,11E) isomers viz., 13(S)-hydroxy-9E,11E-octadecadienoic acid (13(S)-EE-HODE) and 13(R)-hydroxy-9E,11E-octadecadienoic acid (13(R)-EE-HODE). Studies credit 13(S)-HODE with a range of clinically relevant bioactivities; recent studies have assigned activities to 13(R)-HODE that differ from those of 13(S)-HODE; and other studies have proposed that one or more of these HODEs mediate physiological and pathological responses, are markers of various human diseases, and/or contribute to the progression of certain diseases in humans. Since, however, many studies on the identification, quantification, and actions of 13(S)-HODE in cells and tissues have employed methods that did not distinguish between these isomers, 13-HODE is used here when the actual isomer studied is unclear.

Specialized pro-resolving mediators are a large and growing class of cell signaling molecules formed in cells by the metabolism of polyunsaturated fatty acids (PUFA) by one or a combination of lipoxygenase, cyclooxygenase, and cytochrome P450 monooxygenase enzymes. Pre-clinical studies, primarily in animal models and human tissues, implicate SPM in orchestrating the resolution of inflammation. Prominent members include the resolvins and protectins.

References

  1. Ramsewak, RS; Erickson, AJ; Nair, MG (1999). "Bioactive N-isobutylamides from the flower buds of Spilanthes acmella". Phytochemistry. 51 (6): 729–32. Bibcode:1999PChem..51..729R. doi:10.1016/S0031-9422(99)00101-6. PMID   10389272.
  2. Spelman, Kevin; Depoix, Delphine; McCray, Megan; Mouray, Elisabeth; Grellier, Philippe (2011). "The Traditional Medicine Spilanthes acmella, and the Alkylamides Spilanthol and Undeca-2E-ene-8,10-diynoic Acid Isobutylamide, Demonstrate in Vitro and in Vivo Antimalarial Activity". Phytotherapy Research. 25 (7): 1098–101. doi:10.1002/ptr.3395. PMC   3374932 . PMID   22692989.
  3. Boonen, Jente; Baert, Bram; Roche, Nathalie; Burvenich, Christian; De Spiegeleer, Bart (2010). "Transdermal behaviour of the N-alkylamide spilanthol (affinin) from Spilanthes acmella (Compositae) extracts". Journal of Ethnopharmacology. 127 (1): 77–84. doi:10.1016/j.jep.2009.09.046. PMID   19808085.
  4. Boonen, Jente; Baert, Bram; Burvenich, Christian; Bondeel, Phillip; De Saeger, Sarah; De Spiegeleer, Bart (2010). "LC-MS profiling of N-alkylamides in Spilanthes acmella extract and the transmucosal behaviour of its main bio-active spilanthol". Journal of Pharmaceutical and Biomedical Analysis. 53 (3): 243–249. doi:10.1016/j.jpba.2010.02.010. PMID   20227845.
  5. 1 2 Bakondi, Edina; Singh, Salam Bhopen; Hajnády, Zoltán; Nagy-Pénzes, Máté; Regdon, Zsolt; Kovács, Katalin; Hegedűs, Csaba; Madácsy, Tamara; Maléth, József; Hegyi, Péter; Demény, Máté Á (2019-09-03). "Spilanthol Inhibits Inflammatory Transcription Factors and iNOS Expression in Macrophages and Exerts Anti-inflammatory Effects in Dermatitis and Pancreatitis". International Journal of Molecular Sciences. 20 (17): E4308. doi: 10.3390/ijms20174308 . ISSN   1422-0067. PMC   6747447 . PMID   31484391.
  6. Luz-Martínez, Beatriz A.; Marrero-Morfa, Dailenys; Luna-Vázquez, Francisco J.; Rojas-Molina, Alejandra; Ibarra-Alvarado, Cesar (2024). "Affinin, isolated from Heliopsis longipes, induces an antihypertensive effect that involves CB1 cannabinoid receptors and TRPA1 and TRPV1 channels activation". Planta Medica. doi:10.1055/a-2244-8855. PMID   38219731. S2CID   266983561.