Stability radius

Last updated

In mathematics, the stability radius of an object (system, function, matrix, parameter) at a given nominal point is the radius of the largest ball, centered at the nominal point, all of whose elements satisfy pre-determined stability conditions. The picture of this intuitive notion is this:

Contents

Radius of stability 1.png

where denotes the nominal point, denotes the space of all possible values of the object , and the shaded area, , represents the set of points that satisfy the stability conditions. The radius of the blue circle, shown in red, is the stability radius.

Abstract definition

The formal definition of this concept varies, depending on the application area. The following abstract definition is quite useful [1] [2]

where denotes a closed ball of radius in centered at .

History

It looks like the concept was invented in the early 1960s. [3] [4] In the 1980s it became popular in control theory [5] and optimization. [6] It is widely used as a model of local robustness against small perturbations in a given nominal value of the object of interest.

Relation to Wald's maximin model

It was shown [2] that the stability radius model is an instance of Wald's maximin model. That is,

where

The large penalty () is a device to force the player not to perturb the nominal value beyond the stability radius of the system. It is an indication that the stability model is a model of local stability/robustness, rather than a global one.

Info-gap decision theory

Info-gap decision theory is a recent non-probabilistic decision theory. It is claimed to be radically different from all current theories of decision under uncertainty. But it has been shown [2] that its robustness model, namely

is actually a stability radius model characterized by a simple stability requirement of the form where denotes the decision under consideration, denotes the parameter of interest, denotes the estimate of the true value of and denotes a ball of radius centered at .

Infogap robustness.png

Since stability radius models are designed to deal with small perturbations in the nominal value of a parameter, info-gap's robustness model measures the local robustness of decisions in the neighborhood of the estimate .

Sniedovich [2] argues that for this reason the theory is unsuitable for the treatment of severe uncertainty characterized by a poor estimate and a vast uncertainty space.

Alternate definition

There are cases where it is more convenient to define the stability radius slightly different. For example, in many applications in control theory the radius of stability is defined as the size of the smallest destabilizing perturbation in the nominal value of the parameter of interest. [7] The picture is this:

Radius of stability 3.png

More formally,

where denotes the distance of from .

Stability radius of functions

The stability radius of a continuous function f (in a functional space F) with respect to an open stability domain D is the distance between f and the set of unstable functions (with respect to D). We say that a function is stable with respect to D if its spectrum is in D. Here, the notion of spectrum is defined on a case-by-case basis, as explained below.

Definition

Formally, if we denote the set of stable functions by S(D) and the stability radius by r(f,D), then:

where C is a subset of F.

Note that if f is already unstable (with respect to D), then r(f,D)=0 (as long as C contains zero).

Applications

The notion of stability radius is generally applied to special functions as polynomials (the spectrum is then the roots) and matrices (the spectrum is the eigenvalues). The case where C is a proper subset of F permits us to consider structured perturbations (e.g. for a matrix, we could only need perturbations on the last row). It is an interesting measure of robustness, for example in control theory.

Properties

Let f be a (complex) polynomial of degree n, C=F be the set of polynomials of degree less than (or equal to) n (which we identify here with the set of coefficients). We take for D the open unit disk, which means we are looking for the distance between a polynomial and the set of Schur stable polynomials. Then:

where q contains each basis vector (e.g. when q is the usual power basis). This result means that the stability radius is bound with the minimal value that f reaches on the unit circle.

Examples

See also

Related Research Articles

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.

In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group where GL(V) is the general linear group of invertible linear transformations of V over F, and F is the normal subgroup consisting of nonzero scalar multiples of the identity transformation (see Scalar transformation).

In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.

<span class="mw-page-title-main">Fermi's interaction</span> Mechanism of beta decay proposed in 1933

In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.

<span class="mw-page-title-main">Large eddy simulation</span> Mathematical model for turbulence

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.

<span class="mw-page-title-main">Rayleigh–Taylor instability</span> Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. However, M-estimators are not inherently robust, as is clear from the fact that they include maximum likelihood estimators, which are in general not robust. The statistical procedure of evaluating an M-estimator on a data set is called M-estimation.

Info-gap decision theory seeks to optimize robustness to failure under severe uncertainty, in particular applying sensitivity analysis of the stability radius type to perturbations in the value of a given estimate of the parameter of interest. It has some connections with Wald's maximin model; some authors distinguish them, others consider them instances of the same principle.

The Hitchin functional is a mathematical concept with applications in string theory that was introduced by the British mathematician Nigel Hitchin. Hitchin (2000) and Hitchin (2001) are the original articles of the Hitchin functional.

Robust optimization is a field of mathematical optimization theory that deals with optimization problems in which a certain measure of robustness is sought against uncertainty that can be represented as deterministic variability in the value of the parameters of the problem itself and/or its solution. It is related to, but often distinguished from, probabilistic optimization methods such as chance-constrained optimization.

In mathematics, Reidemeister torsion is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by Wolfgang Franz and Georges de Rham . Analytic torsion is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer as an analytic analogue of Reidemeister torsion. Jeff Cheeger and Werner Müller proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

Orbit modeling is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity. Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects. Directly modeling an orbit can push the limits of machine precision due to the need to model small perturbations to very large orbits. Because of this, perturbation methods are often used to model the orbit in order to achieve better accuracy.

Generalized filtering is a generic Bayesian filtering scheme for nonlinear state-space models. It is based on a variational principle of least action, formulated in generalized coordinates of motion. Note that "generalized coordinates of motion" are related to—but distinct from—generalized coordinates as used in (multibody) dynamical systems analysis. Generalized filtering furnishes posterior densities over hidden states generating observed data using a generalized gradient descent on variational free energy, under the Laplace assumption. Unlike classical filtering, generalized filtering eschews Markovian assumptions about random fluctuations. Furthermore, it operates online, assimilating data to approximate the posterior density over unknown quantities, without the need for a backward pass. Special cases include variational filtering, dynamic expectation maximization and generalized predictive coding.

<span class="mw-page-title-main">Causal fermion systems</span> Candidate unified theory of physics

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

In mathematics and theoretical computer science, analysis of Boolean functions is the study of real-valued functions on or from a spectral perspective. The functions studied are often, but not always, Boolean-valued, making them Boolean functions. The area has found many applications in combinatorics, social choice theory, random graphs, and theoretical computer science, especially in hardness of approximation, property testing, and PAC learning.

Data-driven control systems are a broad family of control systems, in which the identification of the process model and/or the design of the controller are based entirely on experimental data collected from the plant.

Batch normalization is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.

The variational multiscale method (VMS) is a technique used for deriving models and numerical methods for multiscale phenomena. The VMS framework has been mainly applied to design stabilized finite element methods in which stability of the standard Galerkin method is not ensured both in terms of singular perturbation and of compatibility conditions with the finite element spaces.

References

  1. Zlobec S. (2009). Nondifferentiable optimization: Parametric programming. Pp. 2607-2615, in Encyclopedia of Optimization, Floudas C.A and Pardalos, P.M. editors, Springer.
  2. 1 2 3 4 Sniedovich, M. (2010). A bird's view of info-gap decision theory. Journal of Risk Finance, 11(3), 268-283.
  3. Wilf, H.S. (1960). Maximally stable numerical integration. Journal of the Society for Industrial and Applied Mathematics, 8(3),537-540.
  4. Milne, W.E., and Reynolds, R.R. (1962). Fifth-order methods for the numerical solution of ordinary differential equations. Journal of the ACM, 9(1), 64-70.
  5. Hindrichsen, D. and Pritchard, A.J. (1986). Stability radii of linear systems, Systems and Control Letters, 7, 1-10.
  6. Zlobec S. (1988). Characterizing Optimality in Mathematical Programming Models. Acta Applicandae Mathematicae, 12, 113-180.
  7. Paice A.D.B. and Wirth, F.R. (1998). Analysis of the Local Robustness of Stability for Flows. Mathematics of Control, Signals, and Systems , 11, 289-302.