Stadium (geometry)

Last updated
Parameters of a stadium Stadium geometry.svg
Parameters of a stadium
The Bunimovich stadium, a chaotic dynamical system based on the stadium shape BunimovichStadium.svg
The Bunimovich stadium, a chaotic dynamical system based on the stadium shape
The bottom of this plastic basket is stadium-shaped. Plastic laundry basket.jpg
The bottom of this plastic basket is stadium-shaped.

A stadium is a two-dimensional geometric shape constructed of a rectangle with semicircles at a pair of opposite sides. [1] The same shape is known also as a pill shape, [2] discorectangle, [3] obround, [4] [5] or sausage body. [6]

Contents

The shape is based on a stadium, a place used for athletics and horse racing tracks.

A stadium may be constructed as the Minkowski sum of a disk and a line segment. [6] Alternatively, it is the neighborhood of points within a given distance from a line segment. A stadium is a type of oval. However, unlike some other ovals such as the ellipses, it is not an algebraic curve because different parts of its boundary are defined by different equations.

Formulas

The perimeter of a stadium is calculated by the formula where a is the length of the straight sides and r is the radius of the semicircles. With the same parameters, the area of the stadium is . [7]

Bunimovich stadium

When this shape is used in the study of dynamical billiards, it is called the Bunimovich stadium. Leonid Bunimovich used this shape to show that it is possible for billiard tracks to exhibit chaotic behavior (positive Lyapunov exponent and exponential divergence of paths) even within a convex billiard table. [8]

A capsule is produced by revolving a stadium around the line of symmetry that bisects the semicircles.

Related Research Articles

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Lemniscate of Bernoulli</span> Plane algebraic curve

In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F1 and F2, known as foci, at distance 2c from each other as the locus of points P so that PF1·PF2 = c2. The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4.

In mathematics, the isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. Isoperimetric literally means "having the same perimeter". Specifically, the isoperimetric inequality states, for the length L of a closed curve and the area A of the planar region that it encloses, that

<span class="mw-page-title-main">Circular segment</span> Area bounded by a circular arc and a straight line

In geometry, a circular segment or disk segment is a region of a disk which is "cut off" from the rest of the disk by a straight line. The complete line is known as a secant, and the section inside the disk as a chord.

<span class="mw-page-title-main">Semicircle</span> Geometric shape

In mathematics, a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180°. It only has one line of symmetry.

<span class="mw-page-title-main">Convex polygon</span> Polygon that is the boundary of a convex set

In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon. Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Simple polygon</span> Shape bounded by non-intersecting line segments

In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.

<span class="mw-page-title-main">Hearing the shape of a drum</span> Mathematical problem in spectral theory

To hear the shape of a drum is to infer information about the shape of the drumhead from the sound it makes, i.e., from the list of overtones, via the use of mathematical theory.

<span class="mw-page-title-main">Hypotrochoid</span> Curve traced by a point outside a circle rolling within another circle

In geometry, a hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.

<span class="mw-page-title-main">Lens (geometry)</span> Convex plane region bounded by two circular arcs

In 2-dimensional geometry, a lens is a convex region bounded by two circular arcs joined to each other at their endpoints. In order for this shape to be convex, both arcs must bow outwards (convex-convex). This shape can be formed as the intersection of two circular disks. It can also be formed as the union of two circular segments, joined along a common chord.

<span class="mw-page-title-main">Dynamical billiards</span> Dynamical system abstract an ideal game of billiards, with elastic collisions off boundaries

A dynamical billiard is a dynamical system in which a particle alternates between free motion and specular reflections from a boundary. When the particle hits the boundary it reflects from it without loss of speed. Billiards are Hamiltonian idealizations of the game of billiards, but where the region contained by the boundary can have shapes other than rectangular and even be multidimensional. Dynamical billiards may also be studied on non-Euclidean geometries; indeed, the first studies of billiards established their ergodic motion on surfaces of constant negative curvature. The study of billiards which are kept out of a region, rather than being kept in a region, is known as outer billiard theory.

In mathematics, the moving sofa problem or sofa problem is a two-dimensional idealization of real-life furniture-moving problems and asks for the rigid two-dimensional shape of the largest area that can be maneuvered through an L-shaped planar region with legs of unit width. The area thus obtained is referred to as the sofa constant. The exact value of the sofa constant is an open problem. The leading solution, by Joseph L. Gerver, has a value of approximately 2.2195. In November 2024, Jineon Baek posted an arXiv preprint claiming that Gerver's value is optimal, which if true, would solve the moving sofa problem.

<span class="mw-page-title-main">Salinon</span> Geometric shape

The salinon is a geometrical figure that consists of four semicircles. It was first introduced in the Book of Lemmas, a work attributed to Archimedes.

<span class="mw-page-title-main">Introduction to systolic geometry</span> Non-technical introduction to systolic geometry

Systolic geometry is a branch of differential geometry, a field within mathematics, studying problems such as the relationship between the area inside a closed curve C, and the length or perimeter of C. Since the area A may be small while the length l is large, when C looks elongated, the relationship can only take the form of an inequality. What is more, such an inequality would be an upper bound for A: there is no interesting lower bound just in terms of the length.

<span class="mw-page-title-main">Convex curve</span> Type of plane curve

In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions. Important subclasses of convex curves include the closed convex curves, the smooth curves that are convex, and the strictly convex curves, which have the additional property that each supporting line passes through a unique point of the curve.

In mathematics a translation surface is a surface obtained from identifying the sides of a polygon in the Euclidean plane by translations. An equivalent definition is a Riemann surface together with a holomorphic 1-form.

<span class="mw-page-title-main">Capsule (geometry)</span>

A capsule, or stadium of revolution, is a basic three-dimensional geometric shape consisting of a cylinder with hemispherical ends. Another name for this shape is spherocylinder.

In geometry, a circular triangle is a triangle with circular arc edges.

References

  1. Weisstein, Eric W. "Stadium". MathWorld .
  2. O'Hara, Michael J.; O'Leary, Dianne P. (April 2008). "Adiabatic theorem in the presence of noise". Physical Review A. 77 (4). American Physical Society (APS): 042319-1–042319-20. arXiv: 0801.3872 . doi:10.1103/physreva.77.042319.
  3. Dzubiella, Joachim; Matthias Schmidt; Hartmut Löwen (2000). "Topological defects in nematic droplets of hard spherocylinders". Physical Review E. 62 (4): 5081–5091. arXiv: cond-mat/9906388 . Bibcode:2000PhRvE..62.5081D. doi:10.1103/PhysRevE.62.5081. PMID   11089056. S2CID   31381033.
  4. Ackermann, Kurt. "Obround - Punching Tools - VIP, Inc". www.vista-industrial.com. Retrieved 2016-04-29.
  5. "Obround Level Gauge Glass : L.J. Star Incorporated". L.J.Star Incorporated. Archived from the original on 2016-04-22. Retrieved 2016-04-29.
  6. 1 2 Huang, Pingliang; Pan, Shengliang; Yang, Yunlong (2015). "Positive center sets of convex curves". Discrete & Computational Geometry . 54 (3): 728–740. doi:10.1007/s00454-015-9715-9. MR   3392976.
  7. "Stadium Calculator". Calculatorsoup.com. Retrieved 2013-01-31.
  8. Bunimovič, L. A. (1974). "The ergodic properties of certain billiards". Funkcional. Anal. I Priložen. 8 (3): 73–74. MR   0357736.