Star lifting

Last updated

Star lifting is any of several hypothetical processes by which a sufficiently advanced civilization (specifically, one of Kardashev-II or higher) could remove a substantial portion of a star's matter which can then be re-purposed, while possibly optimizing the star's energy output and lifespan at the same time. The term appears to have been coined by David Criswell. [1]

Contents

Stars already lose a small flow of mass via solar wind, coronal mass ejections, and other natural processes. Over the course of a star's life on the main sequence this loss is usually negligible compared to the star's total mass; only at the end of a star's life when it becomes a red giant or a supernova is a large proportion of material ejected. The star lifting techniques that have been proposed would operate by increasing this natural plasma flow and manipulating it with magnetic fields.

Stars have deep gravity wells, so the energy required for such operations is large. For example, lifting solar material from the surface of the Sun to the planet Mercury requires 1.6 × 1013 J/kg. This energy could be supplied by the star itself, collected by a Dyson sphere; using 10% of the Sun's total power output would allow 5.9 × 1021 kilograms of matter to be lifted per year (0.0000003% of the Sun's total mass), or 8% of the mass of Earth's moon.

Methods for lifting material

Thermal-driven outflow

A mechanism for "harvesting" solar wind (RC = ring current, MN = magnetic nozzles, J = plasma jet). Star lifting 1.svg
A mechanism for "harvesting" solar wind (RC = ring current, MN = magnetic nozzles, J = plasma jet).

The simplest system for star lifting would increase the rate of solar wind outflow by directly heating small regions of the star's atmosphere, using any of a number of different means to deliver energy such as microwave beams, lasers, or particle beams whatever proved to be most efficient for the engineers of the system. This would produce a large and sustained eruption similar to a solar flare at the target location, feeding the solar wind.

The resulting outflow would be collected by using a ring current around the star's equator to generate a powerful toroidal magnetic field with its dipoles over the star's rotational poles. This would deflect the star's solar wind into a pair of jets aligned along its rotational axis passing through a pair of magnetic rocket nozzles. The magnetic nozzles would convert some of the plasma's thermal energy into outward velocity, helping cool the outflow. The ring current required to generate this magnetic field would be generated by a ring of particle accelerator space stations in close orbit around the star's equator. These accelerators would be physically separate from each other but would exchange two counterdirected beams of oppositely charged ions with their neighbor on each side, forming a complete circuit around the star.

"Huff-n-Puff"

David Criswell [2] proposed a modification to the polar jet system in which the magnetic field could be used to increase solar wind outflow directly, without requiring additional heating of the star's surface. He dubbed it the "Huff-n-Puff" method, inspired from the Big Bad Wolf's threats in the fairy tale of Three Little Pigs .

In this system the ring of particle accelerators would not be in orbit, instead depending on the outward force of the magnetic field itself for support against the star's gravity. To inject energy into the star's atmosphere the ring current would first be temporarily shut down, allowing the particle accelerator stations to begin falling freely toward the star's surface. Once the stations had developed sufficient inward velocity the ring current would be reactivated and the resulting magnetic field would be used to reverse the stations' fall. This would "squeeze" the star, propelling stellar atmosphere through the polar magnetic nozzles. The ring current would be shut down again before the ring stations achieved enough outward velocity to throw them too far away from the star, and the star's gravity would be allowed to pull them back inward to repeat the cycle.

A single set of ring stations would result in a very intermittent flow. It is possible to smooth this flow out by using multiple sets of ring stations, with each set operating in a different stage of the Huff-n-Puff cycle at any given moment so that there is always one ring "squeezing". This would also smooth out the power requirements of the system over time.

Centrifugal acceleration

An alternative to the Huff-n-Puff method for using the toroidal magnetic field to increase solar wind outflow involves placing the ring stations in a polar orbit rather than an equatorial one. The two magnetic nozzles would then be located on the star's equator. To increase the rate of outflow through these two equatorial jets, the ring system would be rotated around the star at a rate significantly faster than the star's natural rotation. This would cause the stellar atmosphere swept up by the magnetic field to be flung outward.

This method suffers from a number of significant complications compared to the others. Rotating the ring in this manner would require the ring stations to use powerful rocket thrust, requiring both large rocket systems and a large amount of reaction mass. This reaction mass can be "recycled" by directing the rockets' exhausts so that it impacts the star's surface, but harvesting fresh reaction mass from the star's outflow and delivering it to the ring stations in sufficient quantity adds still more complexity to the system. Finally, the resulting jets would spiral outward from the star's equator rather than emerging straight from the poles; this could complicate harvesting it, as well as the arrangement of the Dyson sphere powering the system.

Harvesting lifted mass

The material lifted from a star will emerge in the form of plasma jets hundreds or thousands of astronomical units long, primarily composed of hydrogen and helium and highly diffuse by current engineering standards. The details of extracting useful materials from this stream and storing the vast quantities that would result have not been extensively explored. One possible approach is to purify useful elements from the jets using extremely large-scale mass spectrometry, cool them by laser cooling, and condense them on particles of dust for collection. An alternative method could involve using large solenoids to slow the jets down and separate out the components. Electricity would also be generated via this system. Small artificial gas giant planets could be constructed from excess hydrogen and helium to store it for future use. Excess gas could also be used to build new earthlike planets to custom specifications.

In the case of the Solar System, one possible use for material harvested from the Sun would be to add it to Jupiter. Increasing Jupiter's mass about 100-fold would turn it into a star, allowing it to supply energy to its moons and also to the asteroid belt. However, this would have to be done carefully to avoid catastrophically changing the orbits of other bodies in the Solar System. [2]

Stellar husbandry

The lifespan of a star is determined by the size of its supply of nuclear "fuel" and the rate at which it uses up that fuel in fusion reactions in its core. Although larger stars have a larger supply of fuel, the increased core pressure resulting from that additional mass vastly increases the burn rate; thus large stars have a significantly shorter lifespan than small ones. Current theories of stellar dynamics also suggest that there is very little mixing between the bulk of a star's atmosphere and the material of its core, where fusion takes place, so most of a large star's fuel will never be used naturally. Small red dwarf stars, which are naturally fully convective, allow their core helium to mix with the outer layers of hydrogen which allows extremely long stellar lifespans on the order of trillions of years.

As a star's mass is reduced by star lifting its rate of nuclear fusion will decrease, reducing the amount of energy available to the star lifting process but also reducing the gravity that needs to be overcome. Theoretically, it would be possible to remove an arbitrarily large portion of a star's total mass given sufficient time. In this manner a civilization could control the rate at which its star uses fuel, optimizing the star's power output and lifespan to its needs. The hydrogen and helium extracted in the process could itself be utilized to fuel fusion reactors. Alternatively, the material could be assembled into additional smaller stars, to improve the efficiency of its use. Theoretically, most of the energy stored in the matter lifted from a star could be harvested if it is made into small black holes, via the mechanism of Hawking radiation.

In fiction

Related Research Articles

<span class="mw-page-title-main">Stellar corona</span> Outermost layer of a stars atmosphere

A corona is the outermost layer of a star's atmosphere. It is a hot but relatively dim region of plasma populated by intermittent coronal structures known as solar prominences or filaments.

<span class="mw-page-title-main">Nuclear fusion</span> Process of combining atomic nuclei

Nuclear fusion is a reaction in which two or more atomic nuclei, usually deuterium and tritium, combine to form one or more different atomic nuclei and subatomic particles. The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises due to the difference in nuclear binding energy between the atomic nuclei before and after the reaction. Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released.

<span class="mw-page-title-main">Sun</span> Star at the center of the Solar System

The Sun is the star at the center of the Solar System. It is a massive, hot ball of plasma, inflated and heated by energy produced by nuclear fusion reactions at its core. Part of this energy is emitted from its surface as light, ultraviolet, and infrared radiation, providing most of the energy for life on Earth. The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2024, no device has reached net power, although net positive reactions have been achieved.

<i>Ulysses</i> (spacecraft) 1990 robotic space probe; studied the Sun from a near-polar orbit

Ulysses was a robotic space probe whose primary mission was to orbit the Sun and study it at all latitudes. It was launched in 1990 and made three "fast latitude scans" of the Sun in 1994/1995, 2000/2001, and 2007/2008. In addition, the probe studied several comets. Ulysses was a joint venture of the European Space Agency (ESA) and the United States' National Aeronautics and Space Administration (NASA), under leadership of ESA with participation from Canada's National Research Council. The last day for mission operations on Ulysses was 30 June 2009.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Helios (spacecraft)</span> Pair of sun-orbiting probes launched in 1974-76 by the American and West German space agencies

Helios-A and Helios-B are a pair of probes that were launched into heliocentric orbit to study solar processes. As a joint venture between German Aerospace Center (DLR) and NASA, the probes were launched from Cape Canaveral Air Force Station, Florida, on December 10, 1974, and January 15, 1976, respectively.

<span class="mw-page-title-main">Advanced Composition Explorer</span> NASA satellite of the Explorer program, at SE-L1, studying solar wind etc

Advanced Composition Explorer is a NASA Explorer program satellite and space exploration mission to study matter comprising energetic particles from the solar wind, the interplanetary medium, and other sources.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Orbital ring</span> Conceptual artificial ring around the Earth

An orbital ring is a concept of an artificial ring placed around a body and set rotating at such a rate that the apparent centrifugal force is large enough to counteract the force of gravity. For the Earth, the required speed is on the order of 10 km/sec, compared to a typical low Earth orbit velocity of 8 km/sec. The structure is intended to be used as a space station or as a planetary vehicle for very high-speed transportation or space launch.

<span class="mw-page-title-main">Spacecraft electric propulsion</span> Type of space propulsion using electrostatic and electromagnetic fields for acceleration

Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generating thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

Migma, sometimes migmatron or migmacell, was a proposed colliding beam fusion reactor designed by Bogdan Maglich in 1969. Migma uses self-intersecting beams of ions from small particle accelerators to force the ions to fuse. Similar systems using larger collections of particles, up to microscopic dust sized, were referred to as "macrons". Migma was an area of some research in the 1970s and early 1980s, but lack of funding precluded further development.

<span class="mw-page-title-main">History of Solar System formation and evolution hypotheses</span>

The history of scientific thought about the formation and evolution of the Solar System began with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704. Since the seventeenth century, philosophers and scientists have been forming hypotheses concerning the origins of our Solar System and the Moon and attempting to predict how the Solar System would change in the future. René Descartes was the first to hypothesize on the beginning of the Solar System; however, more scientists joined the discussion in the eighteenth century, forming the groundwork for later hypotheses on the topic. Later, particularly in the twentieth century, a variety of hypotheses began to build up, including the now-commonly accepted nebular hypothesis.

<span class="mw-page-title-main">Energetic neutral atom</span> Technology to create global images of otherwise invisible phenomena

Energetic Neutral Atom (ENA) imaging is a technology used to create global images of otherwise invisible phenomena in the magnetospheres of planets and throughout the heliosphere.

Nuclear gas-core-reactor rockets can provide much higher specific impulse than solid core nuclear rockets because their temperature limitations are in the nozzle and core wall structural temperatures, which are distanced from the hottest regions of the gas core. Consequently, nuclear gas core reactors can provide much higher temperatures to the propellant. Solid core nuclear thermal rockets can develop higher specific impulse than conventional chemical rockets due to the low molecular weight of a hydrogen propellant, but their operating temperatures are limited by the maximum temperature of the solid core because the reactor's temperatures cannot rise above its components' lowest melting temperature.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

A plasma magnet is a proposed spacecraft propulsion device that uses a dipole magnetic field to capture energy from the solar wind. The field acts as a sail, using the captured energy to propel the spacecraft analogously to how the wind propels a sailing vessel. It could accelerate a vessel moving away from the sun and decelerate it when approaching a distant star at the end of an interstellar journey. Thrust vectoring and steering could be achieved by manipulating the dipole tilt for any type of magnetic sail.

References

  1. Matloff, G. L. (2017-01-01). "Star Lifting: An Application for Alien Megastructures". Journal of the British Interplanetary Society . 70: 458–460. Bibcode:2017JBIS...70..458M. ISSN   0007-084X.
  2. 1 2 Rejuvenating the Sun and Avoiding Other Global Catastrophes , p. 167, at Google Books ISBN   978-0-387-68128-3