Staring array

Last updated

A staring array, also known as staring-plane array or focal-plane array (FPA), is an image sensor consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens. FPAs are used most commonly for imaging purposes (e.g. taking pictures or video imagery), but can also be used for non-imaging purposes such as spectrometry, LIDAR, and wave-front sensing.

Contents

In radio astronomy, the FPA is at the focus of a radio telescope. At optical and infrared wavelengths, it can refer to a variety of imaging device types, but in common usage it refers to two-dimensional devices that are sensitive in the infrared spectrum. Devices sensitive in other spectra are usually referred to by other terms, such as CCD (charge-coupled device) and CMOS image sensor in the visible spectrum. FPAs operate by detecting photons at particular wavelengths and then generating an electrical charge, voltage, or resistance in relation to the number of photons detected at each pixel. This charge, voltage, or resistance is then measured, digitized, and used to construct an image of the object, scene, or phenomenon that emitted the photons.

Applications for infrared FPAs include missile or related weapons guidance sensors, infrared astronomy, manufacturing inspection, thermal imaging for firefighting, medical imaging, and infrared phenomenology (such as observing combustion, weapon impact, rocket motor ignition and other events that are interesting in the infrared spectrum).

Comparison to scanning array

Staring arrays are distinct from scanning array and TDI (time-delay integration) imagers in that they image the desired field of view without scanning. Scanning arrays are constructed from linear arrays (or very narrow 2-D arrays) that are rastered across the desired field of view using a rotating or oscillating mirror to construct a 2-D image over time. A TDI imager operates in similar fashion to a scanning array except that it images perpendicularly to the motion of the camera. A staring array is analogous to the film in a typical camera; it directly captures a 2-D image projected by the lens at the image plane. A scanning array is analogous to piecing together a 2D image with photos taken through a narrow slit. A TDI imager is analogous to looking through a vertical slit out the side window of a moving car, and building a long, continuous image as the car passes the landscape.

Scanning arrays were developed and used because of historical difficulties in fabricating 2-D arrays of sufficient size and quality for direct 2-D imaging. Modern FPAs are available with up to 2048 x 2048 pixels, and larger sizes are in development by multiple manufacturers. 320 x 256 and 640 x 480 arrays are available and affordable even for non-military, non-scientific applications.

Construction and materials

The difficulty in constructing high-quality, high-resolution FPAs derives from the materials used. Whereas visible imagers such as CCD and CMOS image sensors are fabricated from silicon, using mature and well-understood processes, IR sensors must be fabricated from other, more exotic materials because silicon is sensitive only in the visible and near-IR spectra. Infrared-sensitive materials commonly used in IR detector arrays include mercury cadmium telluride (HgCdTe, "MerCad", or "MerCadTel"), indium antimonide (InSb, pronounced "Inns-Bee"), indium gallium arsenide (InGaAs, pronounced "Inn-Gas"), and vanadium(V) oxide (VOx, pronounced "Vox"). A variety of lead salts can also be used, but are less common today. None of these materials can be grown into crystals anywhere near the size of modern silicon crystals, nor do the resulting wafers have nearly the uniformity of silicon. Furthermore, the materials used to construct arrays of IR-sensitive pixels cannot be used to construct the electronics needed to transport the resulting charge, voltage, or resistance of each pixel to the measurement circuitry. This set of functions is implemented on a chip called the multiplexer, or readout integrated circuits (ROIC), and is typically fabricated in silicon using standard CMOS processes. The detector array is then hybridized or bonded to the ROIC, typically using indium bump-bonding, and the resulting assembly is called an FPA.

Some materials (and the FPAs fabricated from them) operate only at cryogenic temperatures, and others (such as resistive amorphous silicon (a-Si) and VOx microbolometers) can operate at uncooled temperatures. Some devices are only practical to operate cryogenically as otherwise the thermal noise would swamp the detected signal. Devices can be cooled evaporatively, typically by liquid nitrogen (LN2) or liquid helium, or by using a thermo-electric cooler.

A peculiar aspect of nearly all IR FPAs is that the electrical responses of the pixels on a given device tend to be non-uniform. In a perfect device every pixel would output the same electrical signal when given the same number of photons of appropriate wavelength. In practice nearly all FPAs have both significant pixel-to-pixel offset and pixel-to-pixel photo response non-uniformity (PRNU). When un-illuminated, each pixel has a different "zero-signal" level, and when illuminated the delta in signal is also different. This non-uniformity makes the resulting images impractical for use until they have been processed to normalize the photo-response. This correction process requires a set of known characterization data, collected from the particular device under controlled conditions. The data correction can be done in software, in a DSP or FPGA in the camera electronics, or even on the ROIC in the most modern of devices.

The low volumes, rarer materials, and complex processes involved in fabricating and using IR FPAs makes them far more expensive than visible imagers of comparable size and resolution.

Staring plane arrays are used in modern air-to-air missiles and anti-tank missiles such as the AIM-9X Sidewinder, ASRAAM [1]

Cross talk can inhibit the illumination of pixels. [2]

Applications

3D LIDAR Imaging

Focal plane arrays (FPAs) have been reported to be used for 3D LIDAR imaging. [2] [3] [4]

Improvements

In 2003, a 32 x 32 pixel breadboard was reported with capabilities to repress cross talk between FPAs. Researchers at the U.S. Army Research Laboratory used a collimator to collect and direct the breadboard’s laser beam onto individual pixels. Since low levels of voltage were still observed in pixels that did not illuminate, indicating that illumination was prevented by crosstalk. This cross talk was attributed to capacitive coupling between the microstrip lines and between the FPA’s internal conductors. By replacing the receiver in the breadboard for one with a shorter focal length,  the focus of the collimator was reduced and the system’s threshold for signal recognition was increased. This facilitated a better image by cancelling cross talk. [2]

Another method was to add a flat thinned substrate membrane (approximately 800 angstroms thick) to the FPA. This was reported to eliminate pixel-to-pixel cross talk in FPA imaging applications. [5] In another an avalanche photodiode FPA study, the etching of trenches in between neighboring pixels reduced cross talk. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Charge-coupled device</span> Device for the movement of electrical charge

A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging.

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons.

<span class="mw-page-title-main">Thermographic camera</span> Imaging device using infrared radiation

A thermographic camera is a device that creates an image using infrared (IR) radiation, similar to a normal camera that forms an image using visible light. Instead of the 400–700 nanometre (nm) range of the visible light camera, infrared cameras are sensitive to wavelengths from about 1,000 nm to about 14,000 nm (14 μm). The practice of capturing and analyzing the data they provide is called thermography.

<span class="mw-page-title-main">Thermography</span> Use of thermograms to study heat distribution in structures or regions

Infrared thermography (IRT), thermal video and/or thermal imaging, is a process where a thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are examples of infrared imaging science. Thermographic cameras usually detect radiation in the long-infrared range of the electromagnetic spectrum and produce images of that radiation, called thermograms. Since infrared radiation is emitted by all objects with a temperature above absolute zero according to the black body radiation law, thermography makes it possible to see one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature; therefore, thermography allows one to see variations in temperature. When viewed through a thermal imaging camera, warm objects stand out well against cooler backgrounds; humans and other warm-blooded animals become easily visible against the environment, day or night. As a result, thermography is particularly useful to the military and other users of surveillance cameras.

<span class="mw-page-title-main">Single-photon avalanche diode</span> Solid-state photodetector

A single-photon avalanche diode (SPAD) is a solid-state photodetector within the same family as photodiodes and avalanche photodiodes (APDs), while also being fundamentally linked with basic diode behaviours. As with photodiodes and APDs, a SPAD is based around a semi-conductor p-n junction that can be illuminated with ionizing radiation such as gamma, x-rays, beta and alpha particles along with a wide portion of the electromagnetic spectrum from ultraviolet (UV) through the visible wavelengths and into the infrared (IR).

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

<span class="mw-page-title-main">Indium antimonide</span> Chemical compound

Indium antimonide (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow-gap semiconductor material from the III-V group used in infrared detectors, including thermal imaging cameras, FLIR systems, infrared homing missile guidance systems, and in infrared astronomy. Indium antimonide detectors are sensitive to infrared wavelengths between 1 and 5 μm.

<span class="mw-page-title-main">Multispectral imaging</span> Capturing image data across multiple electromagnetic spectrum ranges

Multispectral imaging captures image data within specific wavelength ranges across the electromagnetic spectrum. The wavelengths may be separated by filters or detected with the use of instruments that are sensitive to particular wavelengths, including light from frequencies beyond the visible light range, i.e. infrared and ultra-violet. It can allow extraction of additional information the human eye fails to capture with its visible receptors for red, green and blue. It was originally developed for military target identification and reconnaissance. Early space-based imaging platforms incorporated multispectral imaging technology to map details of the Earth related to coastal boundaries, vegetation, and landforms. Multispectral imaging has also found use in document and painting analysis.

<span class="mw-page-title-main">Microbolometer</span> Type of bolometer

A microbolometer is a specific type of bolometer used as a detector in a thermal camera. Infrared radiation with wavelengths between 7.5–14 μm strikes the detector material, heating it, and thus changing its electrical resistance. This resistance change is measured and processed into temperatures which can be used to create an image. Unlike other types of infrared detecting equipment, microbolometers do not require cooling.

A time delay and integration or time delay integration (TDI) charge-coupled device (CCD) is an image sensor for capturing images of moving objects at low light levels. While using similar underlying CCD technology, in operation it contrasts with staring arrays and line scanned arrays. It works by synchronized mechanical and electronical scanning, so that the effects of dim imaging targets on the sensor can be integrated over longer periods of time.

<span class="mw-page-title-main">Infrared detector</span>

An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors).

Lead selenide (PbSe), or lead(II) selenide, a selenide of lead, is a semiconductor material. It forms cubic crystals of the NaCl structure; it has a direct bandgap of 0.27 eV at room temperature. A grey solid, it is used for manufacture of infrared detectors for thermal imaging. The mineral clausthalite is a naturally occurring lead selenide.

<span class="mw-page-title-main">Image sensor</span> Device that converts images into electronic signals

An image sensor or imager is a sensor that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

<span class="mw-page-title-main">Active-pixel sensor</span> Image sensor, consisting of an integrated circuit

An active-pixel sensor (APS) is an image sensor, which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for cells.

Chemical imaging is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time information. Hyperspectral imaging measures contiguous spectral bands, as opposed to multispectral imaging which measures spaced spectral bands.

<span class="mw-page-title-main">Sofradir</span>

Sofradir is a B2B company with headquarters in Châtenay-Malabry, France that designs and manufactures infrared (IR) detectors for military, space and commercial applications. The company’s shareholders are Thales, Sagem and Areva. Sofradir designs and manufactures cooled IR detector products that are based on Mercury Cadmium Telluride materials. MCT is considered a very high performance infrared technology. Sofradir also produces other detector technologies, including quantum well infrared photodetectors (QWIP) and uncooled microbolometer detectors.

<span class="mw-page-title-main">Transition-edge sensor</span>

A transition-edge sensor (TES) is a type of cryogenic energy sensor or cryogenic particle detector that exploits the strongly temperature-dependent resistance of the superconducting phase transition.

Focal-plane arrays (FPAs) are widely used in radio astronomy. FPAs are arrays of receivers placed at the focus of the optical system in a radio-telescope. The optical system may be a reflector or a lens. Traditional radio-telescopes have only one receiver at the focus of the telescope, but radio-telescopes are now starting to be equipped with focal plane arrays, which are of three different types: multi-beam feed arrays, bolometer arrays, and the experimental phased-array feeds.

<span class="mw-page-title-main">NIRCam</span> Imaging instrument aboard the James Webb Space Telescope

NIRCam is an instrument aboard the James Webb Space Telescope. It has two major tasks, as an imager from 0.6 to 5 micron wavelength, and as a wavefront sensor to keep the 18-section mirrors functioning as one. In other words, it is a camera and is also used to provide information to align the 18 segments of the primary mirror. It is an infrared camera with ten mercury-cadmium-telluride (HgCdTe) detector arrays, and each array has an array of 2048×2048 pixels. The camera has a field of view of 2.2×2.2 arc minutes with an angular resolution of 0.07 arcsec at 2 microns. NIRCam is also equipped with coronagraphs, which helps to collect data on exoplanets near stars. It helps with imaging anything next to a much brighter object, because the coronagraph blocks that light.

References

  1. Air-to-Air Weapons - Royal Air Force
  2. 1 2 3 Goldberg, A.; Stann, B.; Gupta, N. (July 2003). "Multispectral, Hyperspectral, and Three-Dimensional Imaging Research at the U.S. Army Research Laboratory" (PDF). Proceedings of the International Conference on International Fusion [6th]. 1: 499–506.
  3. Marino, Richard M.; Stephens, Timothy; Hatch, Robert E; McLaughlin, Joseph L.; Mooney, James G.; O'Brien, Michael E.; Rowe, Gregory S.; Adams, Joseph S.; Skelly, Luke (2003-08-21). "A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements". In Kamerman, Gary W (ed.). Laser Radar Technology and Applications VIII. Vol. 5086. pp. 1–15. doi:10.1117/12.501581. S2CID   110267445.
  4. Marino, Richard M.; Davis, William Rhett (2004). "Jigsaw : A Foliage-Penetrating 3 D Imaging Laser Radar System". S2CID   18046922.{{cite web}}: Missing or empty |url= (help)
  5. D., Gunapala, S.; V., Bandara, S.; K., Liu, J.; J., Hill, C.; B., Rafol, S.; M., Mumolo, J.; T., Trinh, J.; Z., Tidrow, M.; D., LeVan, P. (May 2005). "1024 x 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications".{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  6. Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom (2010-08-19). Dereniak, Eustace L; Hartke, John P; Levan, Paul D; Sood, Ashok K; Longshore, Randolph E; Razeghi, Manijeh (eds.). "Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging". Detectors and Imaging Devices: Infrared, Focal Plane, Single Photon. SPIE. 7780: 77801M. Bibcode:2010SPIE.7780E..1MI. doi:10.1117/12.864465. S2CID   120955542.