Stem-cell line

Last updated

Roughly 100,000 cells from rhesus macaques, grouped by similarity. Each colour highlights cells from a different tissue, e.g. thymus and lymph nodes (shades of blue), bone marrow (red), blood (white), tonsil (yellow), gut (shades of brown), brain (grey), liver (green), spleen (purple) and lung (pink). Mapping SHIV infection in the body, 2018 - Wellcome Photography Prize 2019 (cropped).jpg
Roughly 100,000 cells from rhesus macaques, grouped by similarity. Each colour highlights cells from a different tissue, e.g. thymus and lymph nodes (shades of blue), bone marrow (red), blood (white), tonsil (yellow), gut (shades of brown), brain (grey), liver (green), spleen (purple) and lung (pink).

A stem cell line is a group of stem cells that is cultured in vitro and can be propagated indefinitely. Stem cell lines are derived from either animal or human tissues and come from one of three sources: embryonic stem cells, adult stem cells, or induced stem cells. They are commonly used in research and regenerative medicine.

Contents

Properties

By definition, stem cells possess two properties: (1) they can self-renew, which means that they can divide indefinitely while remaining in an undifferentiated state; and (2) they are pluripotent or multipotent, which means that they can differentiate to form specialized cell types. Due to the self-renewal capacity of stem cells, a stem cell line can be cultured in vitro indefinitely.

A stem-cell line is distinctly different from an immortalized cell line, such as the HeLa line. While stem cells can propagate indefinitely in culture due to their inherent properties, immortalized cells would not normally divide indefinitely but have gained this ability due to mutation. Immortalized cell lines can be generated from cells isolated from tumors, or mutations can be introduced to make the cells immortal. [1]

A stem cell line is also distinct from primary cells. Primary cells are cells that have been isolated and then used immediately. Primary cells cannot divide indefinitely and thus cannot be cultured for long periods of time in vitro.[ citation needed ]

Types and methods of derivation

Embryonic stem cell line

An embryonic stem cell line is created from cells derived from the inner cell mass of a blastocyst, an early stage, pre-implantation embryo. [2] In humans, the blastocyst stage occurs 4–5 days post fertilization. To create an embryonic stem cell line, the inner cell-mass is removed from the blastocyst, separated from the trophoectoderm, and cultured on a layer of supportive cells in vitro. In the derivation of human embryonic stem cell lines, embryos left over from in vitro fertilization (IVF) procedures are used. The fact that the blastocyst is destroyed during the process has raised controversy and ethical concerns.

Embryonic stem cells are pluripotent, meaning they can differentiate to form all cell types in the body. In vitro, embryonic stem cells can be cultured under defined conditions to keep them in their pluripotent state, or they can be stimulated with biochemical and physical cues to differentiate them to different cell types.

Adult stem cell line

Adult stem cells are found in juvenile or adult tissues. Adult stem cells are multipotent: they can generate a limited number of differentiated cell types (unlike pluripotent embryonic stem cells). Types of adult stem cells include hematopoietic stem cells and mesenchymal stem cells. Hematopoietic stem cells are found in the bone marrow and generate all cells of the immune system all blood cell types. Mesenchymal stem cells are found in umbilical cord blood, amniotic fluid, and adipose tissue and can generate a number of cell types, including osteoblasts, chondrocytes, and adipocytes. In medicine, adult stem cells are mostly commonly used in bone marrow transplants to treat many bone and blood cancers as well as some autoimmune diseases. [3] (See Hematopoietic stem cell transplantation)

Of the types of adult stem cells have successfully been isolated and identified, only mesenchymal stem cells can successfully be grown in culture for long periods of time. Other adult stem cell types, such as hematopoietic stem cells, are difficult to grow and propagate in vitro. [4] Identifying methods for maintaining hematopoietic stem cells in vitro is an active area of research. Thus, while mesenchymal stem cell lines exist, other types of adult stem cells that are grown in vitro can better be classified as primary cells.

Induced pluripotent stem-cell (iPSC) line

Induced pluripotent stem cell (iPSC) lines are pluripotent stem cells that have been generated from adult/somatic cells. The method of generating iPSCs was developed by Shinya Yamanaka's lab in 2006; his group demonstrated that the introduction of four specific genes could induce somatic cells to revert to a pluripotent stem cell state. [5]

Compared to embryonic stem-cell lines, iPSC lines are also pluripotent in nature but can be derived without the use of human embryos—a process that has raised ethical concerns. Furthermore, patient-specific iPSC cell lines can be generated—that is, cell lines that are genetically matched to an individual. Patient-specific iPSC lines have been generated for the purposes of studying diseases [6] and for developing patient-specific medical therapies.

Methods of culture

Stem-cell lines are grown and maintained at specific temperature and atmospheric conditions (37 degrees Celsius and 5% CO2) in incubators. Culture conditions such as the cell growth medium and surface on which cells are grown vary widely depending on the specific stem cell line. Different biochemical factors can be added to the medium to control the cell phenotype—for example to keep stem cells in a pluripotent state or to differentiate them to a specific cell type.

Uses

Stem-cell lines are used in research and regenerative medicine. They can be used to study stem-cell biology and early human development. In the field of regenerative medicine, it has been proposed that stem cells be used in cell-based therapies to replace injured or diseased cells and tissues. Examples of conditions that researchers are working to develop stem-cell-based treatments for include neurodegenerative diseases, diabetes, and spinal cord injuries.

Stem-cell in-vitro

Stem cells could be used as an ideal in vitro platform to study developmental changes at the molecular level. Neural stem cells (NSC) for examples have been used as a model to study the mechanisms behind the differentiation and maturation of cells of the central nervous system (CNS). These studies are gaining more attention recently since they can be optimised and relevant to modelling neurodegenerative diseases and brain tumors. [7]

Ethical issues

There is controversy associated with the derivation and use of human embryonic stem cell lines. This controversy stems from the fact that derivation of human embryonic stem cells requires the destruction of a blastocyst-stage, pre-implantation human embryo. There is a wide range of viewpoints regarding the moral consideration that blastocyst-stage human embryos should be given. [8] [9]

Access to human embryonic stem-cell lines

United States

In the United States, Executive Order 13505 established that federal money can be used for research in which approved human embryonic stem-cell (hESC) lines are used, but it cannot be used to derive new lines. [10] The National Institutes of Health (NIH) Guidelines on Human Stem Cell Research, effective July 7, 2009, implemented the Executive Order 13505 by establishing criteria which hESC lines must meet to be approved for funding. [11] The NIH Human Embryonic Stem Cell Registry can be accessed online and has updated information on cell lines eligible for NIH funding. [12] There are 486 approved lines as of January 2022. [13]

Studies have found that approved hESC lines are not uniformly used in the US data from cell banks and surveys of researchers indicate that only a handful of the available hESC lines are routinely used in research. Access and utility are cited as the two primary factors influencing what hESC lines scientists choose to work with. [14]

A 2011 survey of stem cell scientists in the US who use hESC lines in their research found that 54% of respondents used two or fewer lines and 75% used three or fewer lines. [15]

Another study tracked cell-line requests fulfilled from the largest US repositories, the National Stem Cell Bank (NSCB) and the Harvard Stem Cell Institute (HSCI; Cambridge, MA, USA), for the periods March 1999 – December 2008 (for NSCB) and April 2004 – December 2008 (for HSCI). [16] For NSCB, out of twenty-one approved cell lines, 77% of requests were for two of the lines (H1 and H9). For HSCI, out of the 17 lines requested more than once, 24.7% of requests were for the two most commonly requested lines.

See also

Related Research Articles

<span class="mw-page-title-main">Human cloning</span> Creation of a genetically identical copy of a human

Therapeutic cloning would involve cloning cells from a human for use in medicine and transplants. It is an active area of research, but is not in medical practice anywhere in the world, as of 2023. Two common methods of therapeutic cloning that are being researched are somatic-cell nuclear transfer and pluripotent stem cell induction.

<span class="mw-page-title-main">Stem cell</span> Undifferentiated biological cells that can differentiate into specialized cells

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

<span class="mw-page-title-main">Fibroblast</span> Animal connective tissue cell

A fibroblast is a type of biological cell that synthesizes the extracellular matrix and collagen, produces the structural framework (stroma) for animal tissues, and plays a critical role in wound healing. Fibroblasts are the most common cells of connective tissue in animals.

<span class="mw-page-title-main">Cellular differentiation</span> Developmental biology

Cellular differentiation is the process in which a stem cell changes from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. However, metabolic composition does get altered quite dramatically where stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. Thus, different cells can have very different physical characteristics despite having the same genome.

<span class="mw-page-title-main">Somatic cell nuclear transfer</span> Method of creating a cloned embryo by replacing the egg nucleus with a body cell nucleus

In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an denucleated oocyte and implanting a donor nucleus from a somatic (body) cell. It is used in both therapeutic and reproductive cloning. In 1996, Dolly the sheep became famous for being the first successful case of the reproductive cloning of a mammal. In January 2018, a team of scientists in Shanghai announced the successful cloning of two female crab-eating macaques from foetal nuclei.

<span class="mw-page-title-main">Embryonic stem cell</span> Type of pluripotent blastocystic stem cell

Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. Isolating the inner cell mass (embryoblast) using immunosurgery results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage have the same moral considerations as embryos in the post-implantation stage of development.

<span class="mw-page-title-main">Embryoid body</span> Three-dimensional aggregate of pluripotent stem cells

Embryoid bodies (EBs) are three-dimensional aggregates of pluripotent stem cells.

<span class="mw-page-title-main">Adult stem cell</span> Multipotent stem cell in the adult body

Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells, they can be found in juvenile, adult animals, and humans, unlike embryonic stem cells.

The stem cell controversy is the consideration of the ethics of research involving the development and use of human embryos. Most commonly, this controversy focuses on embryonic stem cells. Not all stem cell research involves human embryos. For example, adult stem cells, amniotic stem cells, and induced pluripotent stem cells do not involve creating, using, or destroying human embryos, and thus are minimally, if at all, controversial. Many less controversial sources of acquiring stem cells include using cells from the umbilical cord, breast milk, and bone marrow, which are not pluripotent.

Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition. As of 2016, the only established therapy using stem cells is hematopoietic stem cell transplantation. This usually takes the form of a bone-marrow transplantation, but the cells can also be derived from umbilical cord blood. Research is underway to develop various sources for stem cells as well as to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes and heart disease.

Douglas A. Melton is an American medical researcher who is the Xander University Professor at Harvard University, and was an investigator at the Howard Hughes Medical Institute until 2022. Melton serves as the co-director of the Harvard Stem Cell Institute and was the first co-chairman of the Harvard University Department of Stem Cell and Regenerative Biology. Melton is the founder of several biotech companies including Gilead Sciences, Ontogeny, iPierian, and Semma Therapeutics. Melton holds membership in the National Academy of the Sciences, the American Academy of Arts and Sciences, and is a founding member of the International Society for Stem Cell Research.

<span class="mw-page-title-main">Induced pluripotent stem cell</span> Pluripotent stem cell generated directly from a somatic cell

Induced pluripotent stem cells are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, Japan, who together showed in 2006 that the introduction of four specific genes, collectively known as Yamanaka factors, encoding transcription factors could convert somatic cells into pluripotent stem cells. Shinya Yamanaka was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent."

Embryomics is the identification, characterization and study of the diverse cell types which arise during embryogenesis, especially as this relates to the location and developmental history of cells in the embryo. Cell type may be determined according to several criteria: location in the developing embryo, gene expression as indicated by protein and nucleic acid markers and surface antigens, and also position on the embryogenic tree.

Stem cell laws are the law rules, and policy governance concerning the sources, research, and uses in treatment of stem cells in humans. These laws have been the source of much controversy and vary significantly by country. In the European Union, stem cell research using the human embryo is permitted in Sweden, Spain, Finland, Belgium, Greece, Britain, Denmark and the Netherlands; however, it is illegal in Germany, Austria, Ireland, Italy, and Portugal. The issue has similarly divided the United States, with several states enforcing a complete ban and others giving support. Elsewhere, Japan, India, Iran, Israel, South Korea, China, and Australia are supportive. However, New Zealand, most of Africa, and most of South America are restrictive.

Stem cell laws and policy in the United States have had a complicated legal and political history.

<span class="mw-page-title-main">Cell potency</span> Ability of a cell to differentiate into other cell types

Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally unipotency.

Induced stem cells (iSC) are stem cells derived from somatic, reproductive, pluripotent or other cell types by deliberate epigenetic reprogramming. They are classified as either totipotent (iTC), pluripotent (iPSC) or progenitor or unipotent – (iUSC) according to their developmental potential and degree of dedifferentiation. Progenitors are obtained by so-called direct reprogramming or directed differentiation and are also called induced somatic stem cells.

Directed differentiation is a bioengineering methodology at the interface of stem cell biology, developmental biology and tissue engineering. It is essentially harnessing the potential of stem cells by constraining their differentiation in vitro toward a specific cell type or tissue of interest. Stem cells are by definition pluripotent, able to differentiate into several cell types such as neurons, cardiomyocytes, hepatocytes, etc. Efficient directed differentiation requires a detailed understanding of the lineage and cell fate decision, often provided by developmental biology.

<span class="mw-page-title-main">Mouse embryonic fibroblast</span>

Mouse Embryonic Fibroblasts (MEFs) are a type of fibroblast prepared from mouse embryo. MEFs show a spindle shape when cultured in vitro, a typical feature of fibroblasts. The MEF is a limited cell line. After several transmission, MEFs will senesce and finally die off. Nevertheless, researchers can use several strategies, like virus infection or repeated transmission to immortalize MEF cells, which can let MEFs grown indefinitely in spite of some changes in characters.

OP9 cells are a cell line derived from mouse bone marrow stromal cells (mesenchyme). These cells are now characterized as stem cells. When co-cultured with embryonic stem cells (ESC), OP9 cells can induce ESC to differentiate into blood cells by serving as a feeder layer. They have the potential to be used in cell therapy, regenerative medicine and as immunomodulators.

References

  1. Irfan Magsood, M; M. M.; Bahrami, A. R.; Ghasroldasht, M. M. (2013). "Immortality of cell lines: Challenges and advantages of establishment". Cell Biology International. 37 (10): 1038–1045. doi:10.1002/cbin.10137. PMID   23723166. S2CID   14777249.
  2. Thomson, JA; Itskovitz-Eldor J; Shapiro SS; Waknitz MA; Swiergiel JJ; Marshall VS; Jones JM (November 6, 1998). "Embryonic stem cell lines derived from human blastocysts". Science. 282 (5391): 1145–1147. Bibcode:1998Sci...282.1145T. doi:10.1126/science.282.5391.1145. PMID   9804556.
  3. "Stem Cell Basics". National Institutes of Health . Archived from the original on January 27, 2013. Retrieved July 15, 2023.
  4. Walasek, MA; van Os R; de Haan G (August 2012). "Hematopoietic stem cell expansion: challenges and opportunities". Ann N Y Acad Sci. 1266 (1): 138–150. Bibcode:2012NYASA1266..138W. doi:10.1111/j.1749-6632.2012.06549.x. PMID   22901265. S2CID   31893094.
  5. Takahashi, Katzutoshi; Shinya Yamanaka (August 25, 2006). "Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors". Cell. 126 (4): 663–676. doi: 10.1016/j.cell.2006.07.024 . PMID   16904174.
  6. Park, IH; Arora, N; Huo, H; Maherali, N; Ahfeldt, T; Shimamura, A; Lensch, MW; Cowan, C; Hochedlinger, K; Daley, GQ (September 5, 2008). "Disease-specific induced pluripotent stem cells". Cell. 134 (5): 877–886. doi:10.1016/j.cell.2008.07.041. PMC   2633781 . PMID   18691744.
  7. Ruiz-Lozano, Pilar; Rajan, Prithi. "Stem Cells as In Vitro Models of Disease". Current Stem Cell Research & Therapy. 2 (4): 280–292. doi:10.2174/157488807782793772.
  8. George, Robert P; Alfonso Gomez-Lobo (2005). "The Moral Status of the Human Embryo". Perspectives in Biology and Medicine. 48 (2): 201–210. doi:10.1353/pbm.2005.0052. PMID   15834193. S2CID   523989.
  9. Cohen, Cynthia B (June 25, 2007). Renewing the Stuff of Life: Stem Cells, Ethics, and Public Policy. Oxford University Press. ISBN   9780195305241.
  10. "Executive Order: Removing barriers to responsible scientific research involving human stem cells". whitehouse.gov . March 9, 2009 via National Archives.
  11. "National Institutes of Health Guidelines on Human Stem Cell Research" . Retrieved April 24, 2014.
  12. "NIH Human Embryonic Stem Cell Registry" . Retrieved March 1, 2017.
  13. "NIH Human Embryonic Stem Cell Registry" . Retrieved February 10, 2022.
  14. Levine, Aaron D (December 2011). "Access to human embryonic stem cell lines". Nature Biotechnology. 29 (12): 1079–1081. doi:10.1038/nbt.2029. PMID   22158357. S2CID   13518962.
  15. Levine, Aaron D (December 2011). "Access to human embryonic stem cell lines". Nature Biotechnology. 29 (12): 1079–1081. doi:10.1038/nbt.2029. PMID   22158357. S2CID   13518962.
  16. Christopher, Thomas Scott; Jennifer B. McCormick; Jason Owen-Smith (August 2009). "And then there were two: use of hESC lines". Nature Biotechnology. 27 (8): 696–697. doi:10.1038/nbt0809-696. PMC   3933366 . PMID   19668169.