Stephanite

Last updated
Stephanite
Stephanite-oldeuro-119a.jpg
General
Category Sulfosalt mineral
Formula
(repeating unit)
Ag5SbS4
IMA symbol Sph [1]
Strunz classification 2.GB.10
Dana classification 03.02.04.01
Crystal system Orthorhombic
Crystal class Pyramidal (mm2)
H-M symbol: (mm2)
Space group Cmc21
Identification
ColourLead grey to black
Crystal habit Tabular, pseudo-hexagonal crystals; massive
Twinning Common on [110] repeated, forms pseudohexagonal groupings
Cleavage Imperfect on {010}, poor on {021}
Fracture Subconchoidal
Tenacity Brittle
Mohs scale hardness2.0–2.5
Lustre Metallic
Streak Iron black
Diaphaneity Opaque
Specific gravity 6.26
Optical propertiesAnisotropic in polished section
Pleochroism Very weak – white to pale pink
References [2] [3] [4]

Stephanite is a silver antimony sulfosalt mineral with formula: Ag 5 Sb S 4. It is composed of 68.8% silver, and sometimes is of importance as an ore of this metal. [5]

Contents

History

Under the name Schwarzerz it was mentioned by Georgius Agricola in 1546, and it has been variously known as "black silver ore" (German Schwarzgultigerz), brittle silver-ore (Sprödglanzerz), etc. The name stephanite was proposed by W Haidinger in 1845 in honour of the Archduke of Austria Stephan Franz Victor of Habsburg-Lorena (1817–1867). French authors use F. S. Beudant's name psaturose (from the Greek ψαθυρός, fragile). [5]

Properties

It frequently occurs as well-formed crystals, which are orthorhombic and occasionally show indications of hemimorphism: they have the form of six-sided prisms or flat tables terminated by large basal planes and often modified at the edges by numerous pyramid-planes. Twinning on the prism-planes is of frequent occurrence, giving rise to pseudo-hexagonal groups like those of aragonite. The colour is iron-black, and the lustre metallic and brilliant; on exposure to light, however, the crystals soon become dull. [5] Stephanite is an important ore of silver in some mining camps.

Occurrence

Stephanite occurs as a late-stage mineral with other ores of silver in hydrothermal veins. [5] Associated minerals include proustite, acanthite, native silver, tetrahedrite, galena, sphalerite and pyrite. [2] Localities which have yielded good crystallized specimens are Freiberg and Gersdorf near Rosswein in Saxony, Chañarcillo in Chile, and exceptionally Cornwall. In the Comstock lode in Nevada massive stephanite and argentite are important ores of silver.

See also

Related Research Articles

<span class="mw-page-title-main">Euxenite</span> Oxide mineral

Euxenite, or euxenite-(Y), is a brownish black mineral with a metallic luster.

<span class="mw-page-title-main">Nepheline</span> Silica-undersaturated aluminosilicate mineral

Nepheline, also called nephelite (from Ancient Greek νεφέλη (nephélē) 'cloud'), is a rock-forming mineral in the feldspathoid group – a silica-undersaturated aluminosilicate, Na3KAl4Si4O16, that occurs in intrusive and volcanic rocks with low silica, and in their associated pegmatites. It is used in glass and ceramic manufacturing and other industries, and has been investigated as an ore of aluminium.

<span class="mw-page-title-main">Epidote</span> Sorosilicate mineral

Epidote is a calcium aluminium iron sorosilicate mineral.

<span class="mw-page-title-main">Proustite</span> Sulfosalt mineral

Proustite is a sulfosalt mineral consisting of silver sulfarsenide, Ag3AsS3, known also as ruby blende, light red silver, arsenic-silver blende or ruby silver ore, and an important source of the metal. It is closely allied to the corresponding sulfantimonide, pyrargyrite, from which it was distinguished by the chemical analyses of Joseph L. Proust (1754–1826) in 1804, after whom the mineral received its name.

<span class="mw-page-title-main">Acanthite</span> Mineral, silver sulfide

Acanthite is a form of silver sulfide with the chemical formula Ag2S. It crystallizes in the monoclinic system and is the stable form of silver sulfide below 173 °C (343 °F). Argentite is the stable form above that temperature. As argentite cools below that temperature its cubic form is distorted to the monoclinic form of acanthite. Below 173 °C acanthite forms directly. Acanthite is the only stable form in normal air temperature.

<span class="mw-page-title-main">Anglesite</span> Lead sulfate mineral

Anglesite is a lead sulfate mineral with the chemical formula PbSO4. It occurs as an oxidation product of primary lead sulfide ore, galena. Anglesite occurs as prismatic orthorhombic crystals and earthy masses, and is isomorphous with barite and celestine. It contains 74% of lead by mass and therefore has a high specific gravity of 6.3. Anglesite's color is white or gray with pale yellow streaks. It may be dark gray if impure.

<span class="mw-page-title-main">Chalcocite</span> Sulfide mineral

Chalcocite, copper(I) sulfide (Cu2S), is an important copper ore mineral. It is opaque and dark gray to black, with a metallic luster. It has a hardness of 2.5–3 on the Mohs scale. It is a sulfide with a monoclinic crystal system.

<span class="mw-page-title-main">Cuprite</span>

Cuprite is an oxide mineral composed of copper(I) oxide Cu2O, and is a minor ore of copper.

<span class="mw-page-title-main">Alunite</span> Aluminium potassium sulfate mineral

Alunite is a hydroxylated aluminium potassium sulfate mineral, formula KAl3(SO4)2(OH)6. It was first observed in the 15th century at Tolfa, near Rome, where it was mined for the manufacture of alum. First called aluminilite by J.C. Delamétherie in 1797, this name was contracted by François Beudant three decades later to alunite.

<span class="mw-page-title-main">Cobaltite</span> Sulfide mineral composed of cobalt, arsenic, and sulfur

Cobaltite is a sulfide mineral composed of cobalt, arsenic, and sulfur, CoAsS. It naturally appears in the form of a tetartoid, a form of dodecahedron with chiral tetrahedral symmetry. Its impurities may contain up to 10% iron and variable amounts of nickel. Structurally, it resembles pyrite (FeS2) with one of the sulfur atoms replaced by an arsenic atom.

<span class="mw-page-title-main">Tetrahedrite</span> Copper antimony sulfosalt mineral

Tetrahedrite is a copper antimony sulfosalt mineral with formula: (Cu,Fe)
12
Sb
4
S
13
. It is the antimony endmember of the continuous solid solution series with arsenic-bearing tennantite. Pure endmembers of the series are seldom if ever seen in nature. Of the two, the antimony rich phase is more common. Other elements also substitute in the structure, most notably iron and zinc, along with less common silver, mercury and lead. Bismuth also substitutes for the antimony site and bismuthian tetrahedrite or annivite is a recognized variety. The related, silver dominant, mineral species freibergite, although rare, is notable in that it can contain up to 18% silver.

<span class="mw-page-title-main">Pyrargyrite</span> Sulfosalt mineral of silver and antimony

Pyrargyrite is a sulfosalt mineral consisting of silver sulfantimonite, Ag3SbS3. Known also as dark red silver ore, ruby blende, garnete blende or ruby silver, it is an important source of the metal.

<span class="mw-page-title-main">Tetradymite</span>

Tetradymite is a mineral consisting of bismuth, tellurium and sulfide, Bi2Te2S, also known as telluric bismuth. If sulfur is absent the mineral is tellurobismuthite and the formula is then Bi2Te3. Traces of selenium are usually present.

<span class="mw-page-title-main">Bournonite</span> Sulfosalt mineral species

Bournonite, also axotomous antimony glance, wheel ore, berthonite, volchite or dystomic glance (German: antimonbleikupferblende) is a sulfosalt mineral species, trithioantimoniate of lead and copper with the formula PbCuSbS3.

<span class="mw-page-title-main">Heulandite</span>

Heulandite is the name of a series of tecto-silicate minerals of the zeolite group. Prior to 1997, heulandite was recognized as a mineral species, but a reclassification in 1997 by the International Mineralogical Association changed it to a series name, with the mineral species being named:

<span class="mw-page-title-main">Enargite</span> Sulfosalt mineral

Enargite is a copper arsenic sulfosalt mineral with formula Cu3AsS4. It takes its name from the Greek word enarge, "distinct". Enargite is a steel gray, blackish gray, to violet black mineral with metallic luster. It forms slender orthorhombic prisms as well as massive aggregates. It has a hardness of 3 and a specific gravity of 4.45.

<span class="mw-page-title-main">Descloizite</span> Mineral

Descloizite is a rare mineral species consisting of basic lead and zinc vanadate, (Pb, Zn)2(OH)VO4, crystallizing in the orthorhombic crystal system and isomorphous with olivenite. Appreciable gallium and germanium may also be incorporated into the crystal structure.

Rhomboclase is an acidic iron sulfate mineral with a formula reported as H5Fe3+O2(SO4)2·2(H2O) or HFe(SO4)2·4(H2O). It crystallizes in the orthorhombic system and typically occurs as tabular crystals with a rhombic outline. It occurs as transparent colorless, blue, green, yellow or grey crystals with a vitreous to pearly luster.

<span class="mw-page-title-main">Dyscrasite</span> Silver antimonide mineral

The silver antimonide mineral dyscrasite has the chemical formula Ag3Sb. It is an opaque, silver white, metallic mineral which crystallizes in the orthorhombic crystal system. It forms pyramidal crystals up to 5 cm (2.0 in) and can also form cylindrical and prismatic crystals.

<span class="mw-page-title-main">Millerite</span> Nickel sulfide mineral

Millerite or nickel blende is a nickel sulfide mineral, NiS. It is brassy in colour and has an acicular habit, often forming radiating masses and furry aggregates. It can be distinguished from pentlandite by crystal habit, its duller colour, and general lack of association with pyrite or pyrrhotite.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 http://rruff.geo.arizona.edu/doclib/hom/stephanite.pdf Handbook of Mineralogy
  3. http://webmineral.com/data/Stephanite.shtml Webmineral data
  4. http://www.mindat.org/min-3764.html Mindat.org
  5. 1 2 3 4 Spencer 1911, p. 880.
Attribution