Strehl ratio

Last updated

The Strehl ratio is a measure of the quality of optical image formation, originally proposed by Karl Strehl, after whom the term is named. [1] [2] Used variously in situations where optical resolution is compromised due to lens aberrations or due to imaging through the turbulent atmosphere, the Strehl ratio has a value between 0 and 1, with a hypothetical, perfectly unaberrated optical system having a Strehl ratio of 1.

Contents

Mathematical definition

The Strehl ratio is frequently defined [3] as the ratio of the peak aberrated image intensity from a point source compared to the maximum attainable intensity using an ideal optical system limited only by diffraction over the system's aperture. It is also often expressed in terms not of the peak intensity but the intensity at the image center (intersection of the optical axis with the focal plane) due to an on-axis source; in most important cases these definitions result in a very similar figure (or identical figure, when the point of peak intensity must be exactly at the center due to symmetry). Using the latter definition, the Strehl ratio can be computed in terms of the wavefront-error : the offset of the wavefront due to an on-axis point source, compared to that produced by an ideal focusing system over the aperture A(x,y). Using Fraunhofer diffraction theory, one computes the wave amplitude using the Fourier transform of the aberrated pupil function evaluated at 0,0 (center of the image plane) where the phase factors of the Fourier transform formula are reduced to unity. Since the Strehl ratio refers to intensity, it is found from the squared magnitude of that amplitude:

where i is the imaginary unit, is the phase error over the aperture at wavelength λ, and the average of the complex quantity inside the brackets is taken over the aperture A(x,y).

The Strehl ratio can be estimated using only the statistics of the phase deviation , according to a formula rediscovered by Mahajan [4] [5] but known long before in antenna theory as the Ruze formula [6]

where sigma (σ) is the root mean square deviation over the aperture of the wavefront phase: .


The Airy disk

Airy-pattern.svg
Computer-generated image of the Airy disk
Airy Pattern.svg
Graph of the Airy intensity function vs. normalized radius

Due to diffraction, even a focusing system which is perfect according to geometrical optics will have a limited spatial resolution. In the usual case of a uniform circular aperture, the point spread function (PSF) which describes the image formed from an object with no spatial extent (a "point source"), is given by the Airy disk as illustrated here. For a circular aperture, the peak intensity found at the center of the Airy disk defines the point source image intensity required for a Strehl ratio of unity. An imperfect optical system using the same physical aperture will generally produce a broader PSF in which the peak intensity is reduced according to the factor given by the Strehl ratio. An optical system with only minor imperfections in this sense may be referred to as "diffraction limited" as its PSF closely resembles the Airy disk; a Strehl ratio of greater than .8 is frequently cited as a criterion for the use of that designation.

Note that for a given aperture the size of the Airy disk grows linearly with the wavelength , and consequently the peak intensity falls according to so that the reference point for unity Strehl ratio is changed. Typically, as wavelength is increased, an imperfect optical system will have a broader PSF with a decreased peak intensity. However the peak intensity of the reference Airy disk would have decreased even more at that longer wavelength, resulting in a better Strehl ratio at longer wavelengths (typically) even though the actual image resolution is poorer.

Usage

The ratio is commonly used to assess the quality of astronomical seeing in the presence of atmospheric turbulence and assess the performance of any adaptive optical correction system. It is also used for the selection of short exposure images in the lucky imaging method.

In industry, the Strehl ratio has become a popular way to summarize the performance of an optical design because it gives the performance of a real system, of finite cost and complexity, relative to a theoretically perfect system, which would be infinitely expensive and complex to build and would still have a finite point spread function. It provides a simple method to decide whether a system with a Strehl ratio of, for example, 0.95 is good enough, or whether twice as much should be spent to try to get a Strehl ratio of perhaps 0.97 or 0.98.

Limitations

Characterizing the form of the point-spread function by a single number, as the Strehl Ratio does, will be meaningful and sensible only if the point-spread function is little distorted from its ideal (aberration-free) form, which will be true for a well-corrected system that operates close to the diffraction limit. That includes most telescopes and microscopes, but excludes most photographic systems, for example. The Strehl ratio has been linked via the work of André Maréchal [7] to an aberration tolerancing theory which is very useful to designers of well-corrected optical systems, allowing a meaningful link between the aberrations of geometrical optics and the diffraction theory of physical optics. A significant shortcoming of the Strehl ratio as a method of image assessment is that, although it is relatively easy to calculate for an optical design prescription on paper, it is normally difficult to measure for a real optical system, not least because the theoretical maximum peak intensity is not readily available.

See also

Related Research Articles

<span class="mw-page-title-main">Optical aberration</span> Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

<span class="mw-page-title-main">Diffraction</span> Phenomenon of the motion of waves

Diffraction is the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

<span class="mw-page-title-main">Wavelength</span> Distance over which a waves shape repeats

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

<span class="mw-page-title-main">Angular resolution</span> Ability of any image-forming device to distinguish small details of an object

Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. It is used in optics applied to light waves, in antenna theory applied to radio waves, and in acoustics applied to sound waves. The colloquial use of the term "resolution" sometimes causes confusion; when an optical system is said to have a high resolution or high angular resolution, it means that the perceived distance, or actual angular distance, between resolved neighboring objects is small. The value that quantifies this property, θ, which is given by the Rayleigh criterion, is low for a system with a high resolution. The closely related term spatial resolution refers to the precision of a measurement with respect to space, which is directly connected to angular resolution in imaging instruments. The Rayleigh criterion shows that the minimum angular spread that can be resolved by an image forming system is limited by diffraction to the ratio of the wavelength of the waves to the aperture width. For this reason, high resolution imaging systems such as astronomical telescopes, long distance telephoto camera lenses and radio telescopes have large apertures.

<span class="mw-page-title-main">Astronomical seeing</span> Atmospheric distortions of light

In astronomy, seeing is the degradation of the image of an astronomical object due to turbulence in the atmosphere of Earth that may become visible as blurring, twinkling or variable distortion. The origin of this effect is rapidly changing variations of the optical refractive index along the light path from the object to the detector. Seeing is a major limitation to the angular resolution in astronomical observations with telescopes that would otherwise be limited through diffraction by the size of the telescope aperture. Today, many large scientific ground-based optical telescopes include adaptive optics to overcome seeing.

Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.

<span class="mw-page-title-main">Diffraction-limited system</span> Optical system with resolution performance at the instruments theoretical limit

In optics, any optical instrument or system – a microscope, telescope, or camera – has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.

<span class="mw-page-title-main">Airy disk</span> Diffraction pattern in optics

In optics, the Airy disk and Airy pattern are descriptions of the best-focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance from the object, and also when it is viewed at the focal plane of an imaging lens. In contrast, the diffraction pattern created near the diffracting object and is given by the Fresnel diffraction equation.

<span class="mw-page-title-main">Point spread function</span> Response in an optical imaging system

The point spread function (PSF) describes the response of a focused optical imaging system to a point source or point object. A more general term for the PSF is the system's impulse response; the PSF is the impulse response or impulse response function (IRF) of a focused optical imaging system. The PSF in many contexts can be thought of as the extended blob in an image that represents a single point object, that is considered as a spatial impulse. In functional terms, it is the spatial domain version of the optical transfer function (OTF) of an imaging system. It is a useful concept in Fourier optics, astronomical imaging, medical imaging, electron microscopy and other imaging techniques such as 3D microscopy and fluorescence microscopy.

<span class="mw-page-title-main">Acousto-optic modulator</span>

An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves. They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in Sum-frequency generation or Difference-frequency generation between phonons and photons.

Optical resolution describes the ability of an imaging system to resolve detail, in the object that is being imaged. An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes to the optical resolution of the system; the environment in which the imaging is done often is a further important factor.

The Fresnel number (F), named after the physicist Augustin-Jean Fresnel, is a dimensionless number occurring in optics, in particular in scalar diffraction theory.

<span class="mw-page-title-main">Laser beam profiler</span> Measurement device

A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers — ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power — there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.

<span class="mw-page-title-main">Contrast transfer function</span>

The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample. This contrast transfer function (CTF) sets the resolution of high-resolution transmission electron microscopy (HRTEM), also known as phase contrast TEM.

Kirchhoff's diffraction formula approximates light intensity and phase in optical diffraction: light fields in the boundary regions of shadows. The approximation can be used to model light propagation in a wide range of configurations, either analytically or using numerical modelling. It gives an expression for the wave disturbance when a monochromatic spherical wave is the incoming wave of a situation under consideration. This formula is derived by applying the Kirchhoff integral theorem, which uses the Green's second identity to derive the solution to the homogeneous scalar wave equation, to a spherical wave with some approximations.

The Fried parameter or Fried's coherence length is a measure of the quality of optical transmission through the atmosphere due to random inhomogeneities in the atmosphere's refractive index. In practice, such inhomogeneities are primarily due to tiny variations in temperature on smaller spatial scales resulting from random turbulent mixing of larger temperature variations on larger spatial scales as first described by Kolmogorov. The Fried parameter has units of length and is typically expressed in centimeters. It is defined as the diameter of a circular area over which the rms wavefront aberration due to passage through the atmosphere is equal to 1 radian, and typical values relevant to astronomy are in the tens of centimeters depending on atmospheric conditions. For a telescope with an aperture, , the smallest spot that can be observed is given by the telescope's Point spread function (PSF). Atmospheric turbulence increases the diameter of the smallest spot by a factor approximately . As such, imaging from telescopes with apertures much smaller than is less affected by atmospheric seeing than diffraction due to the telescope's small aperture. However, the imaging resolution of telescopes with apertures much larger than will be limited by the turbulent atmosphere, preventing the instruments from approaching the diffraction limit.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

Kernel-phases are observable quantities used in high resolution astronomical imaging used for superresolution image creation. It can be seen as a generalization of closure phases for redundant arrays. For this reason, when the wavefront quality requirement are met, it is an alternative to aperture masking interferometry that can be executed without a mask while retaining phase error rejection properties. The observables are computed through linear algebra from the Fourier transform of direct images. They can then be used for statistical testing, model fitting, or image reconstruction.

Optical holography is a technique which enables an optical wavefront to be recorded and later re-constructed. Holography is best known as a method of generating three-dimensional images but it also has a wide range of other applications.

References

  1. Strehl, K. 1895, Aplanatische und fehlerhafte Abbildung im Fernrohr, Zeitschrift für Instrumentenkunde 15 (Oct.), 362-370.
  2. Strehl, K. 1902, Über Luftschlieren und Zonenfehler, Zeitschrift für Instrumentenkunde, 22 (July), 213-217. [PDF file]
  3. Sacek, Vladimir (July 14, 2006), "6.5. Strehl ratio", Notes on amateur telescope optics, retrieved March 2, 2011
  4. Mahajan, Virendra (1983), "Strehl ratio for primary aberrations in terms of their aberration variance", J. Opt. Soc. Am., 73 (6): 860–861, doi:10.1364/JOSA.73.000860
  5. "Strehl Ratio Formula - Wolfram|Alpha". Archived from the original on 2011-07-18. Retrieved 2011-03-03. Strehl ratio formula
  6. Kiedron, K.; Chian, C. T.; Chuang, K.L. (October–December 1986). "Statistical Analysis of the 70 Meter Antenna Surface Distortions" (PDF). TDA Progress Report 42-88.
  7. Maréchal André (1947). "Etude des effets combinés de la diffraction et des aberrations géométriques sur l'image d'un point lumineux". Rev. Opt. 2: 257–277.