In abstract algebra, every subgroup of a cyclic group is cyclic. Moreover, for a finite cyclic group of order n, every subgroup's order is a divisor of n, and there is exactly one subgroup for each divisor. [1] [2] This result has been called the fundamental theorem of cyclic groups. [3] [4]
For every finite group G of order n, the following statements are equivalent:
If either (and thus both) are true, it follows that there exists exactly one subgroup of order d, for any divisor of n. This statement is known by various names such as characterization by subgroups. [5] [6] [7] (See also cyclic group for some characterization.)
There exist finite groups other than cyclic groups with the property that all proper subgroups are cyclic; the Klein group is an example. However, the Klein group has more than one subgroup of order 2, so it does not meet the conditions of the characterization.
The infinite cyclic group is isomorphic to the additive subgroup Z of the integers. There is one subgroup dZ for each integer d (consisting of the multiples of d), and with the exception of the trivial group (generated by d = 0) every such subgroup is itself an infinite cyclic group. Because the infinite cyclic group is a free group on one generator (and the trivial group is a free group on no generators), this result can be seen as a special case of the Nielsen–Schreier theorem that every subgroup of a free group is itself free. [8]
The fundamental theorem for finite cyclic groups can be established from the same theorem for the infinite cyclic groups, by viewing each finite cyclic group as a quotient group of the infinite cyclic group. [8]
In both the finite and the infinite case, the lattice of subgroups of a cyclic group is isomorphic to the dual of a divisibility lattice. In the finite case, the lattice of subgroups of a cyclic group of order n is isomorphic to the dual of the lattice of divisors of n, with a subgroup of order n/d for each divisor d. The subgroup of order n/d is a subgroup of the subgroup of order n/e if and only if e is a divisor of d. The lattice of subgroups of the infinite cyclic group can be described in the same way, as the dual of the divisibility lattice of all positive integers. If the infinite cyclic group is represented as the additive group on the integers, then the subgroup generated by d is a subgroup of the subgroup generated by e if and only if e is a divisor of d. [8]
Divisibility lattices are distributive lattices, and therefore so are the lattices of subgroups of cyclic groups. This provides another alternative characterization of the finite cyclic groups: they are exactly the finite groups whose lattices of subgroups are distributive. More generally, a finitely generated group is cyclic if and only if its lattice of subgroups is distributive and an arbitrary group is locally cyclic if and only its lattice of subgroups is distributive. [9] The additive group of the rational numbers provides an example of a group that is locally cyclic, and that has a distributive lattice of subgroups, but that is not itself cyclic.
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.
In mathematics, a group is a set equipped with a binary operation that combines any two elements to form a third element in such a way that four conditions called group axioms are satisfied, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation, but groups are encountered in numerous areas within and outside mathematics, and help focusing on essential structural aspects, by detaching them from the concrete nature of the subject of the study.
In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.
In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is usually denoted H ≤ G, read as "H is a subgroup of G".
In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.
In mathematics, a divisor of an integer, also called a factor of , is an integer that may be multiplied by some integer to produce . In this case, one also says that is a multiple of An integer is divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder.
In group theory, a branch of abstract algebra, a cyclic group or monogenous group is a group that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as a power of g in multiplicative notation, or as a multiple of g in additive notation. This element g is called a generator of the group.
In abstract algebra, an abelian group (G, +) is called finitely generated if there exist finitely many elements x1, ..., xs in G such that every x in G can be written in the form
In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination of finitely many elements of the subset and their inverses.
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.
In mathematics, a free abelian group or free Z-module is an abelian group with a basis, or, equivalently, a free module over the integers. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis is a subset such that every element of the group can be uniquely expressed as a linear combination of basis elements with integer coefficients. For instance, the integers with addition form a free abelian group with basis {1}.
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets.
In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups.
In group theory, a branch of mathematics, the order of a group is its cardinality, that is, the number of elements in its set. The order of an elementa of a group, sometimes also called the period length or period of a, is the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, a is said to have infinite order.
In algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination of finitely many elements of the finite set S and of inverses of such elements.
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection.
In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication, and a linear group is an abstract group that is isomorphic to a matrix group over a field K, in other words, admitting a faithful, finite-dimensional representation over K.
In mathematics, specifically in group theory, the Prüfer p-group or the p-quasicyclic group or p∞-group, Z(p∞), for a prime number p is the unique p-group in which every element has p different p-th roots.
In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.
In the branch of mathematics known as universal algebra, a subdirectly irreducible algebra is an algebra that cannot be factored as a subdirect product of "simpler" algebras. Subdirectly irreducible algebras play a somewhat analogous role in algebra to primes in number theory.