In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum. A necessary condition for an integer to equal such a sum is that cannot equal 4 or 5 modulo 9, because the cubes modulo 9 are 0, 1, and −1, and no three of these numbers can sum to 4 or 5 modulo 9. [1] It is unknown whether this necessary condition is sufficient.
Variations of the problem include sums of non-negative cubes and sums of rational cubes. All integers have a representation as a sum of rational cubes, but it is unknown whether the sums of non-negative cubes form a set with non-zero natural density.
A nontrivial representation of 0 as a sum of three cubes would give a counterexample to Fermat's Last Theorem for the exponent three, as one of the three cubes would have the opposite sign as the other two and its negation would equal the sum of the other two. Therefore, by Leonhard Euler's proof of that case of Fermat's last theorem, [2] there are only the trivial solutions
For representations of 1 and 2, there are infinite families of solutions
and
These can be scaled to obtain representations for any cube or any number that is twice a cube. [5] There are also other known representations of 2 that are not given by these infinite families: [6]
However, 1 and 2 are the only numbers with representations that can be parameterized by quartic polynomials as above. [5] Even in the case of representations of 3, Louis J. Mordell wrote in 1953 "I do not know anything" more than its small solutions
and the fact that each of the three cubed numbers must be equal modulo 9. [7] [8]
Since 1955, and starting with the instigation of Mordell, many authors have implemented computational searches for these representations. [9] [10] [6] [11] [12] [13] [14] [15] [16] [17] Elsenhans & Jahnel (2009) used a method of NoamElkies ( 2000 ) involving lattice reduction to search for all solutions to the Diophantine equation
for positive at most 1000 and for , [16] leaving only 33, 42, 74, 114, 165, 390, 579, 627, 633, 732, 795, 906, 921, and 975 as open problems in 2009 for , and 192, 375, and 600 remain with no primitive solutions (i.e. ). After Timothy Browning covered the problem on Numberphile in 2016, Huisman (2016) extended these searches to solving the case of 74, with solution
Through these searches, it was discovered that all that are unequal to 4 or 5 modulo 9 have a solution, with at most two exceptions, 33 and 42. [17]
However, in 2019, Andrew Booker settled the case by discovering that
In order to achieve this, Booker exploited an alternative search strategy with running time proportional to rather than to their maximum, [18] an approach originally suggested by Heath-Brown et al. [19] He also found that
and established that there are no solutions for or any of the other unresolved with .
Shortly thereafter, in September 2019, Booker and Andrew Sutherland finally settled the case, using 1.3 million hours of computing on the Charity Engine global grid to discover that
as well as solutions for several other previously unknown cases including and for . [20]
Booker and Sutherland also found a third representation of 3 using a further 4 million computer-hours on Charity Engine:
This discovery settled a 65-year-old question of Louis J. Mordell that has stimulated much of the research on this problem. [7]
While presenting the third representation of 3 during his appearance in a video on the Youtube channel Numberphile, Booker also presented a representation for 906:
The only remaining unsolved cases up to 1,000 are the seven numbers 114, 390, 627, 633, 732, 921, and 975, and there are no known primitive solutions (i.e. ) for 192, 375, and 600. [20] [23]
Primitive solutions for n from 1 to 78 | ||||||||
n | x | y | z | n | x | y | z | |
---|---|---|---|---|---|---|---|---|
1 | 9 | 10 | −12 | 39 | 117367 | 134476 | −159380 | |
2 | 1214928 | 3480205 | −3528875 | 42 | 12602123297335631 | 80435758145817515 | −80538738812075974 | |
3 | 1 | 1 | 1 | 43 | 2 | 2 | 3 | |
6 | −1 | −1 | 2 | 44 | −5 | −7 | 8 | |
7 | 0 | −1 | 2 | 45 | 2 | −3 | 4 | |
8 | 9 | 15 | −16 | 46 | −2 | 3 | 3 | |
9 | 0 | 1 | 2 | 47 | 6 | 7 | −8 | |
10 | 1 | 1 | 2 | 48 | −23 | −26 | 31 | |
11 | −2 | −2 | 3 | 51 | 602 | 659 | −796 | |
12 | 7 | 10 | −11 | 52 | 23961292454 | 60702901317 | −61922712865 | |
15 | −1 | 2 | 2 | 53 | −1 | 3 | 3 | |
16 | −511 | −1609 | 1626 | 54 | −7 | −11 | 12 | |
17 | 1 | 2 | 2 | 55 | 1 | 3 | 3 | |
18 | −1 | −2 | 3 | 56 | −11 | −21 | 22 | |
19 | 0 | −2 | 3 | 57 | 1 | −2 | 4 | |
20 | 1 | −2 | 3 | 60 | −1 | −4 | 5 | |
21 | −11 | −14 | 16 | 61 | 0 | −4 | 5 | |
24 | −2901096694 | −15550555555 | 15584139827 | 62 | 2 | 3 | 3 | |
25 | −1 | −1 | 3 | 63 | 0 | −1 | 4 | |
26 | 0 | −1 | 3 | 64 | −3 | −5 | 6 | |
27 | −4 | −5 | 6 | 65 | 0 | 1 | 4 | |
28 | 0 | 1 | 3 | 66 | 1 | 1 | 4 | |
29 | 1 | 1 | 3 | 69 | 2 | −4 | 5 | |
30 | −283059965 | −2218888517 | 2220422932 | 70 | 11 | 20 | −21 | |
33 | −2736111468807040 | −8778405442862239 | 8866128975287528 | 71 | −1 | 2 | 4 | |
34 | −1 | 2 | 3 | 72 | 7 | 9 | −10 | |
35 | 0 | 2 | 3 | 73 | 1 | 2 | 4 | |
36 | 1 | 2 | 3 | 74 | 66229832190556 | 283450105697727 | −284650292555885 | |
37 | 0 | −3 | 4 | 75 | 4381159 | 435203083 | −435203231 | |
38 | 1 | −3 | 4 | 78 | 26 | 53 | −55 |
The sums of three cubes problem has been popularized in recent years by Brady Haran, creator of the YouTube channel Numberphile, beginning with the 2015 video "The Uncracked Problem with 33" featuring an interview with Timothy Browning. [24] This was followed six months later by the video "74 is Cracked" with Browning, discussing Huisman's 2016 discovery of a solution for 74. [25] In 2019, Numberphile published three related videos, "42 is the new 33", "The mystery of 42 is solved", and "3 as the sum of 3 cubes", to commemorate the discovery of solutions for 33, 42, and the new solution for 3. [26] [27] [22]
Booker's solution for 33 was featured in articles appearing in Quanta Magazine [28] and New Scientist [29] , as well as an article in Newsweek in which Booker's collaboration with Sutherland was announced: "...the mathematician is now working with Andrew Sutherland of MIT in an attempt to find the solution for the final unsolved number below a hundred: 42". [30] The number 42 has additional popular interest due to its appearance in the 1979 Douglas Adams science fiction novel The Hitchhiker's Guide to the Galaxy as the answer to The Ultimate Question of Life, the Universe, and Everything.
Booker and Sutherland's announcements [31] [32] of a solution for 42 received international press coverage, including articles in New Scientist, [33] Scientific American , [34] Popular Mechanics , [35] The Register , [36] Die Zeit , [37] Der Tagesspiegel , [38] Helsingin Sanomat , [39] Der Spiegel , [40] New Zealand Herald , [41] Indian Express , [42] Der Standard , [43] Las Provincias , [44] Nettavisen, [45] Digi24, [46] and BBC World Service. [47] Popular Mechanics named the solution for 42 as one of the "10 Biggest Math Breakthroughs of 2019". [48]
The resolution of Mordell's question by Booker and Sutherland a few weeks later sparked another round of news coverage. [21] [49] [50] [51] [52] [53] [54]
In Booker's invited talk at the fourteenth Algorithmic Number Theory Symposium he discusses some of the popular interest in this problem and the public reaction to the announcement of solutions for 33 and 42. [55]
In 1992, Roger Heath-Brown conjectured that every unequal to 4 or 5 modulo 9 has infinitely many representations as sums of three cubes. [56] The case of this problem was used by Bjorn Poonen as the opening example in a survey on undecidable problems in number theory, of which Hilbert's tenth problem is the most famous example. [57] Although this particular case has since been resolved, it is unknown whether representing numbers as sums of cubes is decidable. That is, it is not known whether an algorithm can, for every input, test in finite time whether a given number has such a representation. If Heath-Brown's conjecture is true, the problem is decidable. In this case, an algorithm could correctly solve the problem by computing modulo 9, returning false when this is 4 or 5, and otherwise returning true. Heath-Brown's research also includes more precise conjectures on how far an algorithm would have to search to find an explicit representation rather than merely determining whether one exists. [56]
A variant of this problem related to Waring's problem asks for representations as sums of three cubes of non-negative integers. In the 19th century, Carl Gustav Jacob Jacobi and collaborators compiled tables of solutions to this problem. [58] It is conjectured that the representable numbers have positive natural density. [59] [60] This remains unknown, but Trevor Wooley has shown that of the numbers from to have such representations. [61] [62] [63] The density is at most . [1]
Every integer can be represented as a sum of three cubes of rational numbers (rather than as a sum of cubes of integers). [64] [65]
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.
In mathematics, a Diophantine equation is an equation of the form P(x1, ..., xj, y1, ..., yk) = 0 (usually abbreviated P(x, y) = 0) where P(x, y) is a polynomial with integer coefficients, where x1, ..., xj indicate parameters and y1, ..., yk indicate unknowns.
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.
In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3.
A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.
1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is also known as the Ramanujan number or Hardy–Ramanujan number, named after G. H. Hardy and Srinivasa Ramanujan.
In number theory, Znám's problem asks which sets of integers have the property that each integer in the set is a proper divisor of the product of the other integers in the set, plus 1. Znám's problem is named after the Slovak mathematician Štefan Znám, who suggested it in 1972, although other mathematicians had considered similar problems around the same time.
In mathematics, the coin problem is a mathematical problem that asks for the largest monetary amount that cannot be obtained using only coins of specified denominations. For example, the largest amount that cannot be obtained using only coins of 3 and 5 units is 7 units. The solution to this problem for a given set of coin denominations is called the Frobenius number of the set. The Frobenius number exists as long as the set of coin denominations is setwise coprime.
The Beal conjecture is the following conjecture in number theory:
The Erdős–Straus conjecture is an unproven statement in number theory. The conjecture is that, for every integer that is 2 or more, there exist positive integers , , and for which In other words, the number can be written as a sum of three positive unit fractions.
A Markov number or Markoff number is a positive integer x, y or z that is part of a solution to the Markov Diophantine equation
Brocard's problem is a problem in mathematics that seeks integer values of such that is a perfect square, where is the factorial. Only three values of are known — 4, 5, 7 — and it is not known whether there are any more.
In mathematics and statistics, sums of powers occur in a number of contexts:
In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.
Fermat's Last Theorem is a theorem in number theory, originally stated by Pierre de Fermat in 1637 and proven by Andrew Wiles in 1995. The statement of the theorem involves an integer exponent n larger than 2. In the centuries following the initial statement of the result and before its general proof, various proofs were devised for particular values of the exponent n. Several of these proofs are described below, including Fermat's proof in the case n = 4, which is an early example of the method of infinite descent.
In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So:
Andrew Richard Booker is a British mathematician who is currently Professor of Pure Mathematics at the University of Bristol. He is an analytic number theorist known for his work on L-functions of automorphic forms and his contributions to the sums of three cubes problem.