Superframe

Last updated

In telecommunications, superframe (SF) is a T1 framing standard. In the 1970s it replaced the original T1/D1 framing scheme of the 1960s in which the framing bit simply alternated between 0 and 1.

Contents

Superframe is sometimes called D4 Framing to avoid confusion with single-frequency signaling. It was first supported by the D2 channel bank, but it was first widely deployed with the D4 channel bank.

In order to determine where each channel is located in the stream of data being received, each set of 24 channels is aligned in a frame. The frame is 192 bits long (8 * 24), and is terminated with a 193rd bit, the framing bit, which is used to find the end of the frame.

In order for the framing bit to be located by receiving equipment, a predictable pattern is sent on this bit. Equipment will search for a bit which has the correct pattern, and will align its framing based on that bit. The pattern sent is 12 bits long, so every group of 12 frames is called a superframe. The pattern used in the 193rd bit is 100011 011100. [1] [2] [3]

Each channel sends two bits of call supervision data during each superframe using robbed-bit signaling during frames 6 and 12 of the superframe.

More specifically, after the 6th and 12th bit in the superframe pattern, the least significant data bit of each channel (bit 8; T1 data is sent big-endian and uses 1-origin numbering) is replaced by a "channel-associated signalling" bit (bits A and B, respectively). [1] [2]

Superframe remained in service in many places through the turn of the century, replaced by the improved extended superframe (ESF) of the 1980s in applications where its additional features were desired.

Extended superframe

In telecommunications, extended superframe (ESF) is a T1 framing standard. ESF is sometimes called D5 Framing because it was first used in the D5 channel bank, invented in the 1980s.

It is preferred to its predecessor, superframe, because it includes a cyclic redundancy check (CRC) and 4000 bit/s channel capacity for a data link channel (used to pass out-of-band data between equipment.) It requires less frequent synchronization than the earlier superframe format, and provides on-line, real-time monitoring of circuit capability and operating condition.

Structure

An extended superframe is 24 frames long, and the framing bit of each frame is used in the following manner:

The CRC is computed using the polynomial x6+x+1 over all 24×193 = 4632 bits (framing and data) of the previous superframe, but with its framing bits forced to 1 for the purpose of CRC computation. [4] The purpose of this small CRC is not to take any immediate action, but to keep statistics on the performance of the link.

Like the predecessor superframe, every sixth frame's least-significant data bit can be used for robbed-bit signaling of call supervision state. However, there are four such bits (ABCD) per channel per extended superframe, rather than the two bits (AB) provided per superframe. (Specifically, the robbed bits follow framing bits 6, 12, 18 and 24.)

Unlike the superframe, it is possible to avoid robbed-bit signalling and send call supervision over the data link instead.

Related Research Articles

A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated and, in the event the check values do not match, corrective action can be taken against data corruption. CRCs can be used for error correction.

In digital transmission, the number of bit errors is the numbers of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors.

In telecommunication, frame synchronization or framing is the process by which, while receiving a stream of fixed-length frames, the receiver identifies the frame boundaries, permitting the data bits within the frame to be extracted for decoding or retransmission.

<span class="mw-page-title-main">T-carrier</span> Carrier system for digital transmission of multiplexed telephone calls.

The T-carrier is a member of the series of carrier systems developed by AT&T Bell Laboratories for digital transmission of multiplexed telephone calls.

<span class="mw-page-title-main">Time-division multiplexing</span> Multiplexing technique for digital signals

Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century.

The U interface or U reference point is a Basic Rate Interface (BRI) in the local loop of an Integrated Services Digital Network (ISDN), connecting the network terminator (NT1/2) on the customer's premises to the line termination (LT) in the carrier's local exchange, in other words providing the connection from subscriber to central office.

The E-carrier is a member of the series of carrier systems developed for digital transmission of many simultaneous telephone calls by time-division multiplexing. The European Conference of Postal and Telecommunications Administrations (CEPT) originally standardised the E-carrier system, which revised and improved the earlier American T-carrier technology, and this has now been adopted by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). It was widely used in almost all countries outside the US, Canada, and Japan. E-carrier deployments have steadily been replaced by Ethernet as telecommunication networks transition towards all IP.

AES3 is a standard for the exchange of digital audio signals between professional audio devices. An AES3 signal can carry two channels of pulse-code-modulated digital audio over several transmission media including balanced lines, unbalanced lines, and optical fiber.

<span class="mw-page-title-main">Serial digital interface</span> Family of digital video interfaces

Serial digital interface (SDI) is a family of digital video interfaces first standardized by SMPTE in 1989. For example, ITU-R BT.656 and SMPTE 259M define digital video interfaces used for broadcast-grade video. A related standard, known as high-definition serial digital interface (HD-SDI), is standardized in SMPTE 292M; this provides a nominal data rate of 1.485 Gbit/s.

Digital Signal 1 is a T-carrier signaling scheme devised by Bell Labs. DS1 is the primary digital telephone standard used in the United States, Canada and Japan and is able to transmit up to 24 multiplexed voice and data calls over telephone lines. E-carrier is used in place of T-carrier outside the United States, Canada, Japan, and South Korea. DS1 is the logical bit pattern used over a physical T1 line; in practice, the terms DS1 and T1 are often used interchangeably.

In communications systems, robbed-bit signaling (RBS) is a scheme to provide maintenance and line signaling services on many T1 digital carrier circuits using channel-associated signaling (CAS). The T1 carrier circuit is a type of dedicated circuit currently employed in North America and Japan.

In computer networking and telecommunications, TDM over IP (TDMoIP) is the emulation of time-division multiplexing (TDM) over a packet-switched network (PSN). TDM refers to a T1, E1, T3 or E3 signal, while the PSN is based either on IP or MPLS or on raw Ethernet. A related technology is circuit emulation, which enables transport of TDM traffic over cell-based (ATM) networks.

<span class="mw-page-title-main">Bipolar encoding</span>

In telecommunication, bipolar encoding is a type of return-to-zero (RZ) line code, where two nonzero values are used, so that the three values are +, −, and zero. Such a signal is called a duobinary signal. Standard bipolar encodings are designed to be DC-balanced, spending equal amounts of time in the + and − states.

CRC-based framing is a kind of frame synchronization used in Asynchronous Transfer Mode (ATM) and other similar protocols.

Line signaling is a class of telecommunications signaling protocols. Line signaling is responsible for off-hook, ringing signal, answer, ground start, on-hook unidirectional supervision messaging in each direction from calling party to called party and vice versa. After an off-hook, line signaling initiates register signaling to accomplish the exchange of telephone numbers of called party and in more modern line-signaling protocols, the calling party as well. While register signaling occurs, line signaling remains quiescent unless the calling party goes on-hook or an abnormal cessation of the call occurs, such as due to equipment malfunction or shutdown or due to network outage upstream in that call-attempt's series of spanned trunks.

Link Access Procedure for Modems (LAPM) is part of the V.42 error correction protocol for modems.

In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.

In computer networking, a Fibre Channel frame is the frame of the Fibre Channel protocol. The basic building blocks of an FC connection are the frames. They contain the information to be transmitted (payload), the address of the source and destination ports and link control information. Frames are broadly categorized as

The Serial Low-power Inter-chip Media Bus (SLIMbus) is a standard interface between baseband or application processors and peripheral components in mobile terminals. It was developed within the MIPI Alliance, founded by ARM, Nokia, STMicroelectronics and Texas Instruments. The interface supports many digital audio components simultaneously, and carries multiple digital audio data streams at differing sample rates and bit widths.

Digital mobile radio (DMR) is a digital radio standard for voice and data transmission in non-public radio networks. It was created by the European Telecommunications Standards Institute (ETSI), and is designed to be low-cost and easy to use. DMR, along with P25 phase II and NXDN are the main competitor technologies in achieving 6.25 kHz equivalent bandwidth using the proprietary AMBE+2 vocoder. DMR and P25 II both use two-slot TDMA in a 12.5 kHz channel, while NXDN uses discrete 6.25 kHz channels using frequency division and TETRA uses a four-slot TDMA in a 25 kHz channel.

References

  1. 1 2 Motorola (September 1996). "Appendix D: T1 Overview" (PDF). FT100 M User's Guide . Retrieved 2015-12-07.
  2. 1 2 Davidson, Floyd (5 Oct 1998). "Re: T1 signalling". Newsgroup:  comp.dcom.telecom.tech.
  3. techfest.com T1 Overview Archived May 20, 2011, at the Wayback Machine
  4. Yoon, Hee Byung (June 1991). The Error Performance Analysis Over Cyclic Redundancy Check Codes (PDF) (M.Sc. thesis). Naval Postgraduate School. pp. 8–10. Archived (PDF) from the original on December 10, 2015.