Susan J. Clark

Last updated

Professor Susan J. Clark FAA FAHMS is an Australian biomedical researcher in epigenetics of development and cancer. She was elected a Fellow of the Australian Academy of Science in 2015, and is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and Research Director and Head of Genomics and Epigenetics Division at the Garvan Institute of Medical Research. [1] Clark developed the first method for bisulphite sequencing [2] for DNA methylation analysis and used it to establish that the methylation machinery of mammalian cells is capable of both maintenance and de novo methylation at CpNpG sites and showed is inheritable. [3] Clark's research has advanced understanding of the role of DNA methylation, non-coding RNA and microRNA in embryogenesis, reprogramming, stem cell development and cancer and has led to the identification of epigenomic biomarkers in cancer. [4] [5] Clark is a founding member of the International Human Epigenome Consortium (IHEC) and President of the Australian Epigenetics Alliance (AEpiA). [6]

Contents

Education and significance of research

Clark completed her Bachelor of Science (Honours Call 1) degree at the Australian National University, ACT, Australia in 1978, under the supervision of Dr Ken Reed and Dr Lynn Dalgarno (who along with Dr John Shine uncovered the Shine-Dalgarno sequence). She earned a PhD (1982) in Biochemistry at the University of Adelaide, South Australia, by mapping and sequencing human histone genes, under the supervision of Dr Julian Wells. During her postdoctoral years (1983-1988) at Biotechnology Australia, Clark led studies on the first recombinant vaccine development in Australia and eukaryotic gene expression of human inhibin, IL-3 and GM-CSF.

As Group Leader of the Gene Regulation Unit at the Kanematsu Laboratories, Royal Prince Alfred Hospital from 1992 - 2000, Clark developed highly sensitive techniques that enabled DNA methylation sequencing of single genes from small volumes (<100 cells) using sodium bisulphite, which converts cytosine residues to uracil residues in single-stranded DNA, under conditions that preserve 5-Methylcytosine.

In 2000 Clark established the Epigenetics Group at the Sydney Cancer Centre, Royal Prince Alfred Hospital and led the unit until 2004. She went on to establish the Epigenetics Research Program in the Cancer Research Division and the moved Garvan Institute of Medical Research and was appointed the inaugural Head of the Genomics and Epigenetics Division in 2015. Clark has published over 650 manuscripts which contributed to the emergence of an entirely new discipline of cancer epigenomics.

Recognition and awards

Related Research Articles

Epigenetics Study of heritable DNA and histone modifications that affect the expression of a gene without a change in its nucleotide sequence.

In biology, epigenetics is the study of heritable phenotype changes that do not involve alterations in the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic basis for inheritance. Epigenetics most often involves changes that affect gene activity and expression, but the term can also be used to describe any heritable phenotypic change. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors, or be part of normal development.

5-Methylcytosine Chemical compound which is a modified DNA base

5-Methylcytosine is a methylated form of the DNA base cytosine (C) that regulates gene transcription and takes several other biological roles. When cytosine is methylated, the DNA maintains the same sequence, but the expression of methylated genes can be altered. 5-Methylcytosine is incorporated in the nucleoside 5-methylcytidine.

CpG site Region of often-methylated DNA with a cytosine followed by a guanine

The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG islands. Cytosines in CpG dinucleotides can be methylated to form 5-methylcytosines. Enzymes that add a methyl group are called DNA methyltransferases. In mammals, 70% to 80% of CpG cytosines are methylated. Methylating the cytosine within a gene can change its expression, a mechanism that is part of a larger field of science studying gene regulation that is called epigenetics.

DNA methyltransferase Class of enzymes

In biochemistry, the DNA methyltransferase family of enzymes catalyze the transfer of a methyl group to DNA. DNA methylation serves a wide variety of biological functions. All the known DNA methyltransferases use S-adenosyl methionine (SAM) as the methyl donor.

Regulation of gene expression

Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products. Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein. Often, one gene regulator controls another, and so on, in a gene regulatory network.

DNA methylation Biological process

DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals, DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and carcinogenesis.

Epigenome

An epigenome consists of a record of the chemical changes to the DNA and histone proteins of an organism; these changes can be passed down to an organism's offspring via transgenerational stranded epigenetic inheritance. Changes to the epigenome can result in changes to the structure of chromatin and changes to the function of the genome.

John Shine

Professor John Shine is an Australian biochemist and molecular biologist. Shine and Lynn Dalgarno discovered the nucleotide sequence, called the Shine-Dalgarno sequence, necessary for the initiation and termination of protein synthesis. He directed the Garvan Institute of Medical Research in Sydney from 1990 to 2011. In May 2018 Shine was elected President of the Australian Academy of Science.

Bisulfite sequencing Lab procedure detecting 5-methylcytosines in DNA

Bisulfitesequencing (also known as bisulphite sequencing) is the use of bisulfite treatment of DNA before routine sequencing to determine the pattern of methylation. DNA methylation was the first discovered epigenetic mark, and remains the most studied. In animals it predominantly involves the addition of a methyl group to the carbon-5 position of cytosine residues of the dinucleotide CpG, and is implicated in repression of transcriptional activity.

Computational epigenetics

Computational epigenetics uses statistical methods and mathematical modelling in epigenetic research. Due to the recent explosion of epigenome datasets, computational methods play an increasing role in all areas of epigenetic research.

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell. Epigenetic modifications are reversible modifications on a cell's DNA or histones that affect gene expression without altering the DNA sequence. Epigenomic maintenance is a continuous process and plays an important role in stability of eukaryotic genomes by taking part in crucial biological mechanisms like DNA repair. Plant flavones are said to be inhibiting epigenomic marks that cause cancers. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation, and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis. The study of epigenetics on a global level has been made possible only recently through the adaptation of genomic high-throughput assays.

Manel Esteller

Manel Esteller graduated in Medicine from the University of Barcelona in 1992, where he also obtained his doctorate, specializing in the molecular genetics of endometrial carcinoma, in 1996. He was an invited researcher at the School of Biological and Medical Sciences at the University of St Andrews, Scotland, during which time his research interests focused on the molecular genetics of inherited breast cancer.

Methylated DNA immunoprecipitation is a large-scale purification technique in molecular biology that is used to enrich for methylated DNA sequences. It consists of isolating methylated DNA fragments via an antibody raised against 5-methylcytosine (5mC). This technique was first described by Weber M. et al. in 2005 and has helped pave the way for viable methylome-level assessment efforts, as the purified fraction of methylated DNA can be input to high-throughput DNA detection methods such as high-resolution DNA microarrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). Nonetheless, understanding of the methylome remains rudimentary; its study is complicated by the fact that, like other epigenetic properties, patterns vary from cell-type to cell-type.

Cancer epigenetics Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, or even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. point out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. Several medications which have epigenetic impact are now used in several of these diseases.

Reduced representation bisulfite sequencing Methylation process

Reduced representation bisulfite sequencing (RRBS) is an efficient and high-throughput technique for analyzing the genome-wide methylation profiles on a single nucleotide level. It combines restriction enzymes and bisulfite sequencing to enrich for areas of the genome with a high CpG content. Due to the high cost and depth of sequencing to analyze methylation status in the entire genome, Meissner et al. developed this technique in 2005 to reduce the amount of nucleotides required to sequence to 1% of the genome. The fragments that comprise the reduced genome still include the majority of promoters, as well as regions such as repeated sequences that are difficult to profile using conventional bisulfite sequencing approaches.

The International Human Epigenome Consortium (IHEC) is a scientific organization, founded in 2010, that helps to coordinate global efforts in the field of Epigenomics. The initial goal was to generate at least 1,000 reference (baseline) human epigenomes from different types of normal and disease-related human cell types.

Marianne Frommer is an Australian geneticist. She was born in Hong Kong and educated at the University of Sydney – BSc(Hons) 1969 and PhD in 1976. She is best known for developing a protocol to map DNA methylation by bisulphite genomic sequencing.

Whole genome bisulfite sequencing (WGBS), is a next-generation sequencing technology used to determine the DNA methylation status of single cytosines by treating the DNA with sodium bisulfite before sequencing. Sodium bisulfite is a chemical compound that converts unmethylated cytosines into uracil. The cytosines that haven't converted in uracil are methylated. After sequencing, the unmethylated cytosines appear as thymines.

Andrew Paul Feinberg is the director of the Center for Epigenetics, chief of the Division of Molecular Medicine in the Department of Medicine, and the King Fahd Professor of Medicine, Oncology, Molecular Biology & Genetics in the School of Medicine at Johns Hopkins University.

Human epigenome is the complete set of structural modifications of chromatin and chemical modifications of histones and nucleotides. These modifications affect gene expression according to cellular type and development status. Various studies show that epigenome depends on exogenous factors.

References

  1. "Prof Susan Clark". Garvan Institute of Medical Research.
  2. Susan, J.CIark; Harrison, Janet; Paul, Cheryl L.; Frommer, Marianne (1994). "High sensitivity mapping of methylated cytosines". Nucleic Acids Research. 22 (15): 2990–2997. doi:10.1093/nar/22.15.2990. ISSN   0305-1048. PMC   310266 . PMID   8065911.
  3. Clark, Susan J.; Harrison, Janet; Frommer, Marianne (May 1995). "CpNpG methylation in mammalian cells". Nature Genetics. 10 (1): 20–27. doi:10.1038/ng0595-20. ISSN   1061-4036. PMID   7647784. S2CID   8857760.
  4. "Hormone resistance in breast cancer linked to DNA 'rewiring'". ScienceDaily. Retrieved 2021-02-22.
  5. "CNIO team develop a technology to improve effectiveness of stem cells in regenerative medicine". EurekAlert!. Retrieved 2021-02-22.
  6. "AEpiA Committee | Australian Epigenetics Alliance".
  7. "Academy elects 28 new Fellows". AAHMS - Australian Academy of Health and Medical Sciences. 2020-10-14. Retrieved 2020-12-08.
  8. "2019 Category Winners - NSW Chief Scientist & Engineer". www.chiefscientist.nsw.gov.au. Retrieved 2019-10-30.