In number theory, Sylvester's sequence is an integer sequence in which each term is the product of the previous terms, plus one. Its first few terms are
Sylvester's sequence is named after James Joseph Sylvester, who first investigated it in 1880. [1] Its values grow doubly exponentially, and the sum of its reciprocals forms a series of unit fractions that converges to 1 more rapidly than any other series of unit fractions. [2] The recurrence by which it is defined allows the numbers in the sequence to be factored more easily than other numbers of the same magnitude, [3] but, due to the rapid growth of the sequence, complete prime factorizations are known only for a few of its terms. [4] Values derived from this sequence have also been used to construct finite Egyptian fraction representations of 1, Sasakian Einstein manifolds, [5] and hard instances for online algorithms. [6]
Formally, Sylvester's sequence can be defined by the formula [7]
The product of the empty set is 1, [8] so this formula gives s0 = 2, without need of a separate base case.
Alternatively, one may define the sequence by the recurrence [3]
It is straightforward to show by induction that this is equivalent to the other definition.
The Sylvester numbers grow doubly exponentially as a function of n. Specifically, it can be shown that
for a number E that is approximately 1.26408473530530... [9] (sequence A076393 in the OEIS ). This formula has the effect of the following algorithm:
This would only be a practical algorithm if we had a better way of calculating E to the requisite number of places than calculating sn and taking its repeated square root. [10]
The double-exponential growth of the Sylvester sequence is unsurprising if one compares it to the sequence of Fermat numbers Fn ; the Fermat numbers are usually defined by a doubly exponential formula, , but they can also be defined by a product formula very similar to that defining Sylvester's sequence: [11]
The unit fractions formed by the reciprocals of the values in Sylvester's sequence generate an infinite series:
The partial sums of this series have a simple form,
This may be proved by induction, or more directly by noting that the recursion implies that
so the sum telescopes
Since this sequence of partial sums (sj − 2)/(sj − 1) converges to one, the overall series forms an infinite Egyptian fraction representation of the number one:
One can find finite Egyptian fraction representations of one, of any length, by truncating this series and subtracting one from the last denominator:
The sum of the first k terms of the infinite series provides the closest possible underestimate of 1 by any k-term Egyptian fraction. [2] For example, the first four terms add to 1805/1806, and therefore any Egyptian fraction for a number in the open interval (1805/1806, 1) requires at least five terms.
It is possible to interpret the Sylvester sequence as the result of a greedy algorithm for Egyptian fractions, that at each step chooses the smallest possible denominator that makes the partial sum of the series be less than one. [12] Alternatively, the terms of the sequence after the first can be viewed as the denominators of the odd greedy expansion of 1/2.
As Sylvester himself observed, Sylvester's sequence seems to be unique in having such quickly growing values, while simultaneously having a series of reciprocals that converges to a rational number. This sequence provides an example showing that double-exponential growth is not enough to cause an integer sequence to be an irrationality sequence. [13]
To make this more precise, it follows from results of Badea (1993) that, if a sequence of integers grows quickly enough that
and if the series
converges to a rational number A, then, for all n after some point, this sequence must be defined by the same recurrence
that can be used to define Sylvester's sequence. [14]
Erdős & Graham (1980) conjectured that, in results of this type, the inequality bounding the growth of the sequence could be replaced by a weaker condition, [15]
Badea (1995) surveys progress related to this conjecture; see also Brown (1979). [16]
If i < j, it follows from the definition that sj ≡ 1 (mod si ). Therefore, every two numbers in Sylvester's sequence are relatively prime. The sequence can be used to prove that there are infinitely many prime numbers, as any prime can divide at most one number in the sequence. More strongly, no prime factor of a number in the sequence can be congruent to 5 modulo 6, and the sequence can be used to prove that there are infinitely many primes congruent to 7 modulo 12. [17]
Are all the terms in Sylvester's sequence squarefree?
Much remains unknown about the factorization of the numbers in Sylvester's sequence. For instance, it is not known if all numbers in the sequence are squarefree, although all the known terms are. [18]
As Vardi (1991) describes, it is easy to determine which Sylvester number (if any) a given prime p divides: simply compute the recurrence defining the numbers modulo p until finding either a number that is congruent to zero (mod p) or finding a repeated modulus. [3] Using this technique he found that 1166 out of the first three million primes are divisors of Sylvester numbers, [19] and that none of these primes has a square that divides a Sylvester number. The set of primes that can occur as factors of Sylvester numbers is of density zero in the set of all primes: [20] indeed, the number of such primes less than x is . [21]
The following table shows known factorizations of these numbers (except the first four, which are all prime): [4]
n | Factors of sn |
---|---|
4 | 13 × 139 |
5 | 3263443, which is prime |
6 | 547 × 607 × 1033 × 31051 |
7 | 29881 × 67003 × 9119521 × 6212157481 |
8 | 5295435634831 × 31401519357481261 × 77366930214021991992277 |
9 | 181 × 1987 × 112374829138729 × 114152531605972711 × 35874380272246624152764569191134894955972560447869169859142453622851 |
10 | 2287 × 2271427 × 21430986826194127130578627950810640891005487 × P156 |
11 | 73 × C416 |
12 | 2589377038614498251653 × 2872413602289671035947763837 × C785 |
13 | 52387 × 5020387 × 5783021473 × 401472621488821859737 × 287001545675964617409598279 × C1600 |
14 | 13999 × 74203 × 9638659 × 57218683 × 10861631274478494529 × C3293 |
15 | 17881 × 97822786011310111 × 54062008753544850522999875710411 × C6618 |
16 | 128551 × C13335 |
17 | 635263 × 1286773 × 21269959 × C26661 |
18 | 50201023123 × 139263586549 × 60466397701555612333765567 × C53313 |
19 | 775608719589345260583891023073879169 × C106685 |
20 | 352867 × 6210298470888313 × C213419 |
21 | 387347773 × 1620516511 × C426863 |
22 | 91798039513 × C853750 |
As is customary, Pn and Cn denote prime numbers and unfactored composite numbers n digits long.
Boyer, Galicki & Kollár (2005) use the properties of Sylvester's sequence to define large numbers of Sasakian Einstein manifolds having the differential topology of odd-dimensional spheres or exotic spheres. They show that the number of distinct Sasakian Einstein metrics on a topological sphere of dimension 2n − 1 is at least proportional to sn and hence has double exponential growth with n. [5]
As Galambos & Woeginger (1995) describe, Brown (1979) and Liang (1980) used values derived from Sylvester's sequence to construct lower bound examples for online bin packing algorithms. [6] Seiden & Woeginger (2005) similarly use the sequence to lower bound the performance of a two-dimensional cutting stock algorithm. [22]
Znám's problem concerns sets of numbers such that each number in the set divides but is not equal to the product of all the other numbers, plus one. Without the inequality requirement, the values in Sylvester's sequence would solve the problem; with that requirement, it has other solutions derived from recurrences similar to the one defining Sylvester's sequence. Solutions to Znám's problem have applications to the classification of surface singularities (Brenton and Hill 1988) and to the theory of nondeterministic finite automata. [23]
Curtiss (1922) describes an application of the closest approximations to one by k-term sums of unit fractions, in lower-bounding the number of divisors of any perfect number, and Miller (1919) uses the same property to upper bound the size of certain groups. [24]
In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements . It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.
In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial:
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the sequence begins
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are
In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.
In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.
2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures.
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions:
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.
In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.
An Egyptian fraction is a finite sum of distinct unit fractions, such as
A unit fraction is a positive fraction with one as its numerator, 1/n. It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number. Examples are 1/1, 1/2, 1/3, 1/4, 1/5, etc. When an object is divided into equal parts, each part is a unit fraction of the whole.
In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
In number theory, Znám's problem asks which sets of integers have the property that each integer in the set is a proper divisor of the product of the other integers in the set, plus 1. Znám's problem is named after the Slovak mathematician Štefan Znám, who suggested it in 1972, although other mathematicians had considered similar problems around the same time.
The Erdős–Straus conjecture is an unproven statement in number theory. The conjecture is that, for every integer that is 2 or more, there exist positive integers , , and for which
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer. The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold