Symbiobacterium thermophilum

Last updated

Symbiobacterium thermophilum
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
S. thermophilum
Binomial name
Symbiobacterium thermophilum
Ohno et al. 2000

Symbiobacterium thermophilum is a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. It is Gram-negative and tryptophanase-positive, with type strain T(T) (= IAM 14863T). It is the type species of its genus. [1] Symbiobacterium is related to the Gram-positive Firmicutes and Actinobacteria, but belongs to a lineage that is distinct from both. [2] S. thermophilum has a bacillus shaped cell structure with no flagella. [3] This bacterium is located throughout the environment in soils and fertilizers. [4]

Contents

Cell Structure

Although Gram staining S. thermophilum shows a negative lab result, there are key Gram-negative membrane biosynthesis proteins that it lacks, such as LPS:glycosyltransferase and polysaccharide transporters. [3] Instead, the cell structure of S. thermophilum includes proteins STH61, 969, 1321, 2197, 2492, and 3168 which are associated with the enveloped S-layer bacteria. [3] The bacillus shape of S. thermophilum cells may be caused by the mreBCD (STH372-4) gene, located adjacent to the min locus. [3] Although it has no flagella, the genome of S. thermophilum does include a flagella biosynthesis gene cluster. S. thermophilum is found to produce endospores in specific conditions. [3] There is less research on the spore-like structure of S. thermophilum as it is the rarer form.

Genome Structure

Its genome has been sequenced, and has a size of 3.57 Mbp, with 3338 protein-coding genes. [3] Characteristics of S. thermophilum such as the production of tryptophanase and β-tyrosinase, the cell surface structure, and a negative gram stain results indicate that the bacteria is Gram-negative. However, the sequence of 16S rRNA gene led to the complete phylogenic analysis of S. thermophilum, concluding it was in fact Gram-positive. [5]  High-G+C content (68.7%) along with its Gram stain results indicates that S. thermophilum belongs to the Actinomyces phylum, but the genome and proteins are more closely related to the Firmicutes, a Gram-positive phylum with low-G+C content. S. thermophilum further defies the knowledge that endospore forming genes are unique to the Bacillus-Clostridium group, showing genes involved in the formation of endospores. [5]  Sequencing of proteins proved biological roles in 2,082 of the 3,338 CDSs. [3]  The genome of S. thermophilum is not even partially alike other prokaryotic genomes sequenced at this point in time, as indicated by a CDS similarity matrix search. [3]

Growth

S. thermophilum depends on other strains of Bacillus to grow, in a co-culture mechanism. [1] This is known as microbial commensalism and often occurs in composts. [1] S. thermophilum is one of many cultures that arise from compost derivatives. Under optimal conditions, the growth rate maximizes at 5x10^8 cells/mL. [1]

Metabolism

S. thermophilum uses the non-oxidative branch of the pentose-phosphate glycolytic pathway for metabolism. [1] Despite not using the Entner-Doudoroff pathway and lacking both cellulose-degrading and amylose-degrading enzymes, it has the genes and ability to metabolize glycerol, gluconate, cellobiose, N-acetylgalactosamine, tyrosine, and tryptophan. [1] S. thermophilum contains genes for ferredoxin oxidoreductases, pyruvate, and 2-oxoacid. [1] S. thermophilum lacks the genes for methionine and lysine biosynthesis but has the enzymes that are utilized to biosynthesize amino acids. [1]

Respiration

The variety of respiratory enzymes possessed by S. thermophilum enables the bacterium to grow in both aerobic and anaerobic conditions. [1] The ability to grow in both aerobic and anaerobic conditions is indicated by the presence of both aerobic glycerol-3-phosphate dehydrogenase and anaerobic glycerol-3-phosphate dehydrogenase. [1] The presence of the Nap nitrate reductase gene cluster and Nar nitrate reductase suggest that S. thermophilum utilizes nitrate respiration. [1]

Habitat

Due to the thermophilic nature of S. thermophilum, areas that are ideal for the survival of the bacteria would be ones that have increased temperatures and are nutrient dense. [4] The habitats that are most suited for S. thermophilum would be in the intestinal tract of animals and also in composts. [4] This is because both of those areas contain the essentials for the bacteria to survive. [4]

Distribution and Diversity

S. thermophilum is a bacterium that is widely distributed throughout the environment. It can be found in many different types of soil and fertilizers that contain animal feces, as well as inside animal intestines, and in the feed that is given to the animals. [4] To determine the distribution of S. thermophilum, tests were done to check for growth of the bacterium and whether or not the item being tested contained tryptophanase. [4]

In a study done at the Department of Applied Biological Sciences in Nihon University, Fujisawa, Japan, there was a random sample of Symbiobacterium that was cloned and it determined that out of the 31 samples taken, 16 of the cases showed that the sample had a more diverse genetic structure, where as the other 15 samples had less diverse genetics due to the results showing that the genetics were almost identical to S. thermophilum. [4]

Related Research Articles

<i>Bacillus</i> Genus of bacteria

Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Firmicutes, with 266 named species. The term is also used to describe the shape (rod) of certain bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes: oxygen dependent; or facultative anaerobes: having the ability to continue living in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.

Gram-positive bacteria Bacteria that give a positive result in the Gram stain test

In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall.

Endospore Protective structure formed by bacteria

An endospore is a dormant, tough, and non-reproductive structure produced by some bacteria in the phylum Firmicutes. The name "endospore" is suggestive of a spore or seed-like form, but it is not a true spore. It is a stripped-down, dormant form to which the bacterium can reduce itself. Endospore formation is usually triggered by a lack of nutrients, and usually occurs in gram-positive bacteria. In endospore formation, the bacterium divides within its cell wall, and one side then engulfs the other. Endospores enable bacteria to lie dormant for extended periods, even centuries. There are many reports of spores remaining viable over 10,000 years, and revival of spores millions of years old has been claimed. There is one report of viable spores of Bacillus marismortui in salt crystals approximately 250 million years old. When the environment becomes more favorable, the endospore can reactivate itself to the vegetative state. Most types of bacteria cannot change to the endospore form. Examples of bacterial species that can form endospores include Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Clostridium botulinum, and Clostridium tetani.

A mesophile is an organism that grows best in moderate temperature, neither too hot nor too cold, with an optimum growth range from 20 to 45 °C. The term is mainly applied to microorganisms. Organisms that prefer extreme environments are known as extremophiles. Mesophiles have diverse classifications, belonging to two domains: Bacteria, Archaea, and to kingdom Fungi of domain Eucarya. Mesophiles belonging to the domain Bacteria can either be gram-positive or gram-negative. Oxygen requirements for mesophiles can be aerobic or anaerobic. There are three basic shapes of mesophiles: coccus, bacillus, and spiral.

<i>Aliivibrio fischeri</i> Species of bacterium

Aliivibrio fischeri is a Gram-negative, rod-shaped bacterium found globally in marine environments. This species has bioluminescent properties, and is found predominantly in symbiosis with various marine animals, such as the Hawaiian bobtail squid. It is heterotrophic, oxidase-positive, and motile by means of a single polar flagella. Free-living A. fischeri cells survive on decaying organic matter. The bacterium is a key research organism for examination of microbial bioluminescence, quorum sensing, and bacterial-animal symbiosis. It is named after Bernhard Fischer, a German microbiologist.

Aquifex is a bacterial genus, belonging to phylum Aquificae. There is one species of Aquifex with a validly published name – A. pyrophilus – but "A. aeolicus" is sometimes considered as species though it has no standing as a name given it has not been validly or effectively published. Aquifex spp. are extreme thermophiles, growing best at temperature of 85 °C to 95 °C. They are members of the Bacteria as opposed to the other inhabitants of extreme environments, the Archaea.

Bacillus safensis is a Gram-positive, spore-forming, and rod bacterium, originally isolated from a spacecraft in Florida and California. B. safensis could have possibly been transported to the planet Mars on spacecraft Opportunity and Spirit in 2004. There are several known strains of this bacterium, all of which belong to the Firmicutes phylum of Bacteria. This bacterium also belongs to the large, pervasive genus Bacillus. B. safensis is an aerobic chemoheterotroph and is highly resistant to salt and UV radiation. B. safensis affects plant growth, since it is a powerful plant hormone producer, and it also acts as a plant growth-promoting rhizobacteria, enhancing plant growth after root colonization. Strain B. safensis JPL-MERTA-8-2 is the only bacterial strain shown to grow noticeably faster in micro-gravity environments than on the Earth surface.

<i>Buchnera</i> (bacterium) Genus of bacteria

Buchnera aphidicola, a member of the Proteobacteria, is the primary endosymbiont of aphids, and has been studied in the pea aphid, Acyrthosiphon pisum. Buchnera is believed to have had a free-living, Gram-negative ancestor similar to a modern Enterobacterales, such as Escherichia coli. Buchnera is 3 µm in diameter and has some of the key characteristics of their Enterobacterales relatives, such as a Gram-negative cell wall. However, unlike most other Gram-negative bacteria, Buchnera lacks the genes to produce lipopolysaccharides for its outer membrane. The long association with aphids and the limitation of crossover events due to strictly vertical transmission has seen the deletion of genes required for anaerobic respiration, the synthesis of amino sugars, fatty acids, phospholipids, and complex carbohydrates. This has resulted not only in one of the smallest known genomes of any living organism, but also one of the most genetically stable.

Thermus thermophilus is a Gram-negative bacterium used in a range of biotechnological applications, including as a model organism for genetic manipulation, structural genomics, and systems biology. The bacterium is extremely thermophilic, with an optimal growth temperature of about 65 °C (149 °F). Thermus thermophilus was originally isolated from a thermal vent within a hot spring in Izu, Japan by Tairo Oshima and Kazutomo Imahori. The organism has also been found to be important in the degradation of organic materials in the thermogenic phase of composting. T. thermophilus is classified into several strains, of which HB8 and HB27 are the most commonly used in laboratory environments. Genome analyses of these strains were independently completed in 2004.

The bacterium, despite its simplicity, contains a well-developed cell structure which is responsible for some of its unique biological structures and pathogenicity. Many structural features are unique to bacteria and are not found among archaea or eukaryotes. Because of the simplicity of bacteria relative to larger organisms and the ease with which they can be manipulated experimentally, the cell structure of bacteria has been well studied, revealing many biochemical principles that have been subsequently applied to other organisms.

Bacteria Domain of micro-organisms

Bacteria are a type of biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. Bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth's crust. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

<i>Bacillus anthracis</i> Species of bacterium

Bacillus anthracis is a Gram-positive and rod-shaped bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. It is the only permanent (obligate) pathogen within the genus Bacillus. Its infection is a type of zoonosis, as it is transmitted from animals to humans. It was discovered by a German physician Robert Koch in 1876, and became the first bacterium to be experimentally shown as a pathogen. The discovery was also the first scientific evidence for the germ theory of diseases.

Archaea Domain of single-celled organisms

Archaea constitute a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this term has fallen out of use.

Thermococcus celer is a Gram-negative, spherical-shaped archaeon of the genus Thermococcus. The discovery of T. celer played an important role in rerooting the tree of life when T. celer was found to be more closely related to methanogenic Archaea than to other phenotypically similar thermophilic species. T. celer was the first archaeon discovered to house a circularized genome. Several type strains of T. celer have been identified: Vu13, ATCC 35543, and DSM 2476.

Hydrogenobacter thermophilus is an extremely thermophilic, straight rod (bacillus) bacterium. TK-6 is the type strain for this species. It is a Gram negative, non-motile, obligate chemolithoautotroph. It belongs to one of the earliest branching order of Bacteria. H. thermophilus TK-6 lives in soil that contains hot water. It was one of the first hydrogen oxidizing bacteria described leading to the discovery, and subsequent examination of many unique proteins involved in its metabolism. Its discovery contradicted the idea that no obligate hydrogen oxidizing bacteria existed, leading to a new understanding of this physiological group. Additionally, H. thermophilus contains a fatty acid composition that had not been observed before.

Geobacillus thermoglucosidasius is a thermophilic gram-positive bacterium, and a member of the Firmicutes phylum. It was first isolated from soil in Japan in 1983.

<i>Angomonas deanei</i> Species of parasitic flagellate protist in the Kinetoplastea class

Angomonas deanei is a flagellated trypanosomatid. It is an obligate parasite in the gastrointestinal tract of insects, and is in turn a host to symbiotic bacteria. The bacterial endosymbiont maintains a permanent mutualistic relationship with the protozoan such that it is no longer able to reproduce and survive on its own. The symbiosis is similar to that found in another protist Strigomonas culicis.

Salibacterium is a genus of Gram-positive bacteria from the family of Bacillaceae. The type species is Salibacterium halotolerans.

Bacteroides thetaiotaomicron is a species of bacterium of the genus Bacteroides. It is a gram-negative obligate anaerobe. It is one of the most common bacteria found in human gut microbiota and is also an opportunistic pathogen. Its genome contains numerous genes specialized in digestion of polysaccharides. It is often used in research as a model organism for functional studies of the human microbiota.

Alkalihalobacillus is a genus of gram-positive or gram-variable rod-shaped bacteria in the family Bacillaceae from the order Bacillales. The type species of this genus is Alkalihalobacillus alcalophilus.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Ohno M, Shiratori H, Park MJ, Saitoh Y, Kumon Y, Yamashita N, et al. (September 2000). "Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth". International Journal of Systematic and Evolutionary Microbiology. 50 Pt 5 (5): 1829–1832. doi: 10.1099/00207713-50-5-1829 . PMID   11034494.
  2. Beppu T, Ueda K (2015). Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd. doi:10.1002/9781118960608.gbm00731. ISBN   9781118960608.
  3. 1 2 3 4 5 6 7 8 Ueda K, Yamashita A, Ishikawa J, Shimada M, Watsuji TO, Morimura K, et al. (2004). "Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism". Nucleic Acids Research. 32 (16): 4937–44. doi:10.1093/nar/gkh830. PMC   519118 . PMID   15383646.
  4. 1 2 3 4 5 6 7 Ueda K, Ohno M, Yamamoto K, Nara H, Mori Y, Shimada M, et al. (September 2001). "Distribution and diversity of symbiotic thermophiles, Symbiobacterium thermophilum and related bacteria, in natural environments". Applied and Environmental Microbiology. 67 (9): 3779–84. doi:10.1128/AEM.67.9.3779-3784.2001. PMC   93091 . PMID   11525967.
  5. 1 2 Ueda K, Beppu T (May 2007). "Lessons from studies of Symbiobacterium thermophilum, a unique syntrophic bacterium". Bioscience, Biotechnology, and Biochemistry. 71 (5): 1115–21. doi: 10.1271/bbb.60727 . PMID   17485837.

Further reading