System of imprimitivity

Last updated

The concept of system of imprimitivity is used in mathematics, particularly in algebra and analysis, both within the context of the theory of group representations. It was used by George Mackey as the basis for his theory of induced unitary representations of locally compact groups.

Contents

The simplest case, and the context in which the idea was first noticed, is that of finite groups (see primitive permutation group). Consider a group G and subgroups H and K, with K contained in H. Then the left cosets of H in G are each the union of left cosets of K. Not only that, but translation (on one side) by any element g of G respects this decomposition. The connection with induced representations is that the permutation representation on cosets is the special case of induced representation, in which a representation is induced from a trivial representation. The structure, combinatorial in this case, respected by translation shows that either K is a maximal subgroup of G, or there is a system of imprimitivity (roughly, a lack of full "mixing"). In order to generalise this to other cases, the concept is re-expressed: first in terms of functions on G constant on K-cosets, and then in terms of projection operators (for example the averaging over K-cosets of elements of the group algebra).

Mackey also used the idea for his explication of quantization theory based on preservation of relativity groups acting on configuration space. This generalized work of Eugene Wigner and others and is often considered to be one of the pioneering ideas in canonical quantization.

Example

To motivate the general definitions, a definition is first formulated, in the case of finite groups and their representations on finite-dimensional vector spaces.

If G is a finite group and U a representation of G on a finite-dimensional complex vector space H. The action of G on elements of H induces an action of G on the vector subspaces W of H in this way:

If X is a set of subspaces of H such that

Then (U,X) is a system of imprimitivity for G.

Two assertions must hold in the definition above:

holds only when all the coefficients cW are zero.

If the action of G on the elements of X is transitive, then we say this is a transitive system of imprimitivity.

If G is a finite group, G0 a subgroup of G. A representation U of G is induced from a representation V of G0 if and only if there exist the following:

such that G0 is the stabilizer subgroup of W under the action of G, i.e.

and V is equivalent to the representation of G0 on W0 given by Uh | W0 for hG0. Note that by this definition, induced by is a relation between representations. We would like to show that there is actually a mapping on representations which corresponds to this relation.

For finite groups one can show that a well-defined inducing construction exists on equivalence of representations by considering the character of a representation U defined by

If a representation U of G is induced from a representation V of G0, then

Thus the character function χU (and therefore U itself) is completely determined by χV.

Example

Let G be a finite group and consider the space H of complex-valued functions on G. The left regular representation of G on H is defined by

Now H can be considered as the algebraic direct sum of the one-dimensional spaces Wx, for xG, where

The spaces Wx are permuted by Lg.

Infinite dimensional systems of imprimitivity

To generalize the finite dimensional definition given in the preceding section, a suitable replacement for the set X of vector subspaces of H which is permuted by the representation U is needed. As it turns out, a naïve approach based on subspaces of H will not work; for example the translation representation of R on L2(R) has no system of imprimitivity in this sense. The right formulation of direct sum decomposition is formulated in terms of projection-valued measures.

Mackey's original formulation was expressed in terms of a locally compact second countable (lcsc) group G, a standard Borel space X and a Borel group action

We will refer to this as a standard Borel G-space.

The definitions can be given in a much more general context, but the original setup used by Mackey is still quite general and requires fewer technicalities.

Definition. Let G be a lcsc group acting on a standard Borel space X. A system of imprimitivity based on (G, X) consists of a separable Hilbert space H and a pair consisting of

which satisfy

Example

Let X be a standard G space and μ a σ-finite countably additive invariant measure on X. This means

for all gG and Borel subsets A of G.

Let π(A) be multiplication by the indicator function of A and Ug be the operator

Then (U, π) is a system of imprimitivity of (G, X) on L2μ(X).

This system of imprimitivity is sometimes called the Koopman system of imprimitivity.

Homogeneous systems of imprimitivity

A system of imprimitivity is homogeneous of multiplicity n, where 1 ≤ n ≤ ω if and only if the corresponding projection-valued measure π on X is homogeneous of multiplicity n. In fact, X breaks up into a countable disjoint family {Xn} 1 ≤ n ≤ ω of Borel sets such that π is homogeneous of multiplicity n on Xn. It is also easy to show Xn is G invariant.

Lemma. Any system of imprimitivity is an orthogonal direct sum of homogeneous ones.

It can be shown that if the action of G on X is transitive, then any system of imprimitivity on X is homogeneous. More generally, if the action of G on X is ergodic (meaning that X cannot be reduced by invariant proper Borel sets of X) then any system of imprimitivity on X is homogeneous.

We now discuss how the structure of homogeneous systems of imprimitivity can be expressed in a form which generalizes the Koopman representation given in the example above.

In the following, we assume that μ is a σ-finite measure on a standard Borel G-space X such that the action of G respects the measure class of μ. This condition is weaker than invariance, but it suffices to construct a unitary translation operator similar to the Koopman operator in the example above. G respects the measure class of μ means that the Radon-Nikodym derivative

is well-defined for every gG, where

It can be shown that there is a version of s which is jointly Borel measurable, that is

is Borel measurable and satisfies

for almost all values of (g, x) ∈ G×X.

Suppose H is a separable Hilbert space, U(H) the unitary operators on H. A unitary cocycle is a Borel mapping

such that

for almost all xX

for almost all (g, h, x). A unitary cocycle is strict if and only if the above relations hold for all (g, h, x). It can be shown that for any unitary cocycle there is a strict unitary cocycle which is equal almost everywhere to it (Varadarajan, 1985).

Theorem. Define

Then U is a unitary representation of G on the Hilbert space

Moreover, if for any Borel set A, π(A) is the projection operator

then (U, π) is a system of imprimitivity of (G,X).

Conversely, any homogeneous system of imprimitivity is of this form, for some measure σ-finite measure μ. This measure is unique up to measure equivalence, that is to say, two such measures have the same sets of measure 0.

Much more can be said about the correspondence between homogeneous systems of imprimitivity and cocycles.

When the action of G on X is transitive however, the correspondence takes a particularly explicit form based on the representation obtained by restricting the cocycle Φ to a fixed point subgroup of the action. We consider this case in the next section.

Example

A system of imprimitivity (U, π) of (G,X) on a separable Hilbert space H is irreducible if and only if the only closed subspaces invariant under all the operators Ug and π(A) for g and element of G and A a Borel subset of X are H or {0}.

If (U, π) is irreducible, then π is homogeneous. Moreover, the corresponding measure on X as per the previous theorem is ergodic.

Induced representations

If X is a Borel G space and xX, then the fixed point subgroup

is a closed subgroup of G. Since we are only assuming the action of G on X is Borel, this fact is non-trivial. To prove it, one can use the fact that a standard Borel G-space can be imbedded into a compact G-space in which the action is continuous.

Theorem. Suppose G acts on X transitively. Then there is a σ-finite quasi-invariant measure μ on X which is unique up to measure equivalence (that is any two such measures have the same sets of measure zero).

If Φ is a strict unitary cocycle

then the restriction of Φ to the fixed point subgroup Gx is a Borel measurable unitary representation U of Gx on H (Here U(H) has the strong operator topology). However, it is known that a Borel measurable unitary representation is equal almost everywhere (with respect to Haar measure) to a strongly continuous unitary representation. This restriction mapping sets up a fundamental correspondence:

Theorem. Suppose G acts on X transitively with quasi-invariant measure μ. There is a bijection from unitary equivalence classes of systems of imprimitivity of (G, X) and unitary equivalence classes of representation of Gx.

Moreover, this bijection preserves irreducibility, that is a system of imprimitivity of (G, X) is irreducible if and only if the corresponding representation of Gx is irreducible.

Given a representation V of Gx the corresponding representation of G is called the representation induced byV.

See theorem 6.2 of (Varadarajan, 1985).

Applications to the theory of group representations

Systems of imprimitivity arise naturally in the determination of the representations of a group G which is the semi-direct product of an abelian group N by a group H that acts by automorphisms of N. This means N is a normal subgroup of G and H a subgroup of G such that G = N H and NH = {e} (with e being the identity element of G).

An important example of this is the inhomogeneous Lorentz group.

Fix G, H and N as above and let X be the character space of N. In particular, H acts on X by

Theorem. There is a bijection between unitary equivalence classes of representations of G and unitary equivalence classes of systems of imprimitivity based on (H, X). This correspondence preserves intertwining operators. In particular, a representation of G is irreducible if and only if the corresponding system of imprimitivity is irreducible.

This result is of particular interest when the action of H on X is such that every ergodic quasi-invariant measure on X is transitive. In that case, each such measure is the image of (a totally finite version) of Haar measure on X by the map

A necessary condition for this to be the case is that there is a countable set of H invariant Borel sets which separate the orbits of H. This is the case for instance for the action of the Lorentz group on the character space of R4.

Example: the Heisenberg group

The Heisenberg group is the group of 3 × 3 real matrices of the form:

This group is the semi-direct product of

and the abelian normal subgroup

Denote the typical matrix in H by [w] and the typical one in N by [s,t]. Then

w acts on the dual of R2 by multiplication by the transpose matrix

This allows us to completely determine the orbits and the representation theory.

Orbit structure: The orbits fall into two classes:

Orbit structure on dual space OrbitStructureDual.png
Orbit structure on dual space

Fixed point subgroups: These also fall into two classes depending on the orbit:

Classification: This allows us to completely classify all irreducible representations of the Heisenberg group. These are parametrized by the set consisting of

We can write down explicit formulas for these representations by describing the restrictions to N and H.

Case 1. The corresponding representation π is of the form: It acts on L2(R) with respect to Lebesgue measure and

Case 2. The corresponding representation is given by the 1-dimensional character

Related Research Articles

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

Representation of a Lie group Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In mathematics and theoretical physics, Wigner's classification is a classification of the nonnegative energy irreducible unitary representations of the Poincaré group which have sharp mass eigenvalues. It was introduced by Eugene Wigner, to classify particles and fields in physics—see the article particle physics and representation theory. It relies on the stabilizer subgroups of that group, dubbed the Wigner little groups of various mass states.

In group theory, the induced representation is a representation of a group, G, which is constructed using a known representation of a subgroup H. Given a representation of H, the induced representation is, in a sense, the "most general" representation of G that extends the given one. Since it is often easier to find representations of the smaller group H than of G, the operation of forming induced representations is an important tool to construct new representations.

In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are formally similar to real-valued measures, except that their values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In mathematics and functional analysis a direct integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings.

In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.

Representation theory of the Lorentz group Representation of the symmetry group of spacetime in special relativity

The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.

Wigners theorem Theorem in the mathematical formulation of quantum mechanics

Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT are represented on the Hilbert space of states.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In physics, and specifically in quantum field theory, a bispinor, is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime. They occur in the relativistic spin-1/2 wave function solutions to the Dirac equation.

Representation theory Branch of mathematics that studies abstract algebraic structures

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

Complexification (Lie group) Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

Symmetry in quantum mechanics Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

Lie algebra extension Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

References