Systems medicine is an interdisciplinary field of study that looks at the systems of the human body as part of an integrated whole, incorporating biochemical, physiological, and environment interactions. Systems medicine draws on systems science and systems biology, and considers complex interactions within the human body in light of a patient's genomics, behavior and environment. [1]
The earliest uses of the term systems medicine appeared in 1992, in an article on systems medicine and pharmacology by T. Kamada. [2]
An important topic in systems medicine and systems biomedicine is the development of computational models that describe disease progression and the effect of therapeutic interventions. [3] [4]
More recent approaches include the redefinition of disease phenotypes based on common mechanisms rather than symptoms. These provide then therapeutic targets including network pharmacology [5] and drug repurposing. [6] Since 2018, there is a dedicated scientific journal, Systems Medicine. [7]
Essentially, the issues dealt with by systems medicine can be addressed in two basic ways, molecular (MSM) and organismal systems medicine (OSM): [8] [9]
This approach relies on omics technologies (genomics, proteomics, transcriptomics, phenomics, metabolomics etc.) and tries to understand physiological processes and the evolution of disease in a bottom-up strategy, i.e. by simulating, synthesising and integrating the description of molecular processes to deliver an explanation of an organ system or even the organism in its whole.
This branch of systems medicine, going back to the traditions of Ludwig von Bertalanffy's systems theory and biological cybernetics is a top-down strategy that starts with the description of large, complex processing structures (i.e. neural networks, feedback loops and other motifs) and tries to find sufficient and necessary conditions for the corresponding functional organisation on a molecular level.
A common challenge for both schools is the translation between the molecular and the organismal level. This can be achieved e.g. by affine subspace mapping and sensitivity analysis, but also requires some preparative steps on both ends of the epistemic gap. [9]
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: low quality, country not specified, poor punctuation, inappropriately promotes a single organisation / individual.(February 2024) |
Georgetown University is the first in the Nation to launch a MS program in Systems Medicine. It has developed a rigorous curriculum, The programs have been developed and led by Dr. Sona Vasudevan, PhD. [10]
Country | University / Institute | Department / Center / Program / Network | Participants |
---|---|---|---|
Austria | University of Vienna | Centre for Organismal Systems Biology (COSB) [11] | |
Ireland | Royal College of Surgeons in Ireland | Medical Systems Biology [12] | |
Luxembourg | Luxembourg Centre for Systems Biomedicine | Computational Biology group [13] | |
Netherlands | Eindhoven University of Technology (TU/e) | Department of Biomedical Engineering, Computational Biology Group (CBio) [14] | Natal van Riel |
USA | Institute for Systems Biology (ISB) | Leroy Hood, Alan Aderem, Ruedi Aebersold | |
Germany | Helmholtz Association of German Research Centres | Department of Systems Immunology [15] | Esteban Hernandez-Vargas |
Netherlands | Utrecht University | Laboratory of Translational Immunology [16] Utrecht Center for Quantitative Immunology [17] Pharmacology and Personalised Medicine [18] | Prof. Timothy Radstake, Dr. Aridaman Pandit Prof. Harald H.H.W. Schmidt |
Israel | Weizmann Institute of Science | Department of Molecular Cell Biology [19] Systems Medicine course [20] | Uri Alon [21] [22] [23] |
Norway | Haukeland University Hospital | Neuro-SysMed [24] | Kjell-Morten Myhr, Charalampos Tzoulis |
A model organism is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workings of other organisms. Model organisms are widely used to research human disease when human experimentation would be unfeasible or unethical. This strategy is made possible by the common descent of all living organisms, and the conservation of metabolic and developmental pathways and genetic material over the course of evolution.
Physiology is the scientific study of functions and mechanisms in a living system. As a subdiscipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out chemical and physical functions in a living system. According to the classes of organisms, the field can be divided into medical physiology, animal physiology, plant physiology, cell physiology, and comparative physiology.
Pharmacology is the science of drugs and medications, including a substance's origin, composition, pharmacokinetics, pharmacodynamics, therapeutic use, and toxicology. More specifically, it is the study of the interactions that occur between a living organism and chemicals that affect normal or abnormal biochemical function. If substances have medicinal properties, they are considered pharmaceuticals.
Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. Biophysical research shares significant overlap with biochemistry, molecular biology, physical chemistry, physiology, nanotechnology, bioengineering, computational biology, biomechanics, developmental biology and systems biology.
Computational biology refers to the use of data analysis, mathematical modeling and computational simulations to understand biological systems and relationships. An intersection of computer science, biology, and big data, the field also has foundations in applied mathematics, chemistry, and genetics. It differs from biological computing, a subfield of computer science and engineering which uses bioengineering to build computers.
Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach to biological research.
Pathophysiology is a branch of study, at the intersection of pathology and physiology, concerning disordered physiological processes that cause, result from, or are otherwise associated with a disease or injury. Pathology is the medical discipline that describes conditions typically observed during a disease state, whereas physiology is the biological discipline that describes processes or mechanisms operating within an organism. Pathology describes the abnormal or undesired condition, whereas pathophysiology seeks to explain the functional changes that are occurring within an individual due to a disease or pathologic state.
Medical cybernetics is a branch of cybernetics which has been heavily affected by the development of the computer, which applies the concepts of cybernetics to medical research and practice. At the intersection of systems biology, systems medicine and clinical applications it covers an emerging working program for the application of systems- and communication theory, connectionism and decision theory on biomedical research and health related questions.
Biomedicine is a branch of medical science that applies biological and physiological principles to clinical practice. Biomedicine stresses standardized, evidence-based treatment validated through biological research, with treatment administered via formally trained doctors, nurses, and other such licensed practitioners.
Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept, though some authors and organizations differentiate between these expressions based on particular nuances. P4 is short for "predictive, preventive, personalized and participatory".
Systems biomedicine, also called systems biomedical science, is the application of systems biology to the understanding and modulation of developmental and pathological processes in humans, and in animal and cellular models. Whereas systems biology aims at modeling exhaustive networks of interactions, mainly at intra-cellular level, systems biomedicine emphasizes the multilevel, hierarchical nature of the models by discovering and selecting the key factors at each level and integrating them into models that reveal the global, emergent behavior of the biological process under consideration.
Biological engineering or bioengineering is the application of principles of biology and the tools of engineering to create usable, tangible, economically viable products. Biological engineering employs knowledge and expertise from a number of pure and applied sciences, such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, renewable energy, ecological engineering, agricultural engineering, process engineering and catalysis, and other areas that improve the living standards of societies.
Lawrence E. Hunter is a Professor and Director of the Center for Computational Pharmacology and of the Computational Bioscience Program at the University of Colorado School of Medicine and Professor of Computer Science at the University of Colorado Boulder. He is an internationally known scholar, focused on computational biology, knowledge-driven extraction of information from the primary biomedical literature, the semantic integration of knowledge resources in molecular biology, and the use of knowledge in the analysis of high-throughput data, as well as for his foundational work in computational biology, which led to the genesis of the major professional organization in the field and two international conferences.
Uri Alon is a Professor and Systems Biologist at the Weizmann Institute of Science. His highly cited research investigates gene expression, network motifs and the design principles of biological networks in Escherichia coli and other organisms using both computational biology and traditional experimental wet laboratory techniques.
Akhilesh Reddy is a British physician-scientist. He completed the MB/PhD program at the University of Cambridge where he received a PhD from the MRC Laboratory of Molecular Biology. He previously was a Wellcome Trust Senior Fellow in Clinical Sciences at the University of Cambridge and Fellow of St John's College, Cambridge. He is currently an associate professor of pharmacology at the University of Pennsylvania.
Felix Tretter is an Austrian psychologist and psychiatrist. From 1992 to 2014 he was head of the addiction department of the Isar-Amper-Klinikum München-Ost, formerly known as Bezirkskrankenhaus Haar, Bavaria, Germany. His scientific work has emphasis on modelling of psychophysical scenarios in schizophrenia and addiction research with methods of systems science.
Galit Lahav is an Israeli-American systems biologist and Professor of Systems Biology at Harvard Medical School. In 2018 she became Chair of the Department of Systems Biology at Harvard Medical School. She is known for discovering the pulsatile behavior of the tumor suppressor protein p53 and uncovering its significance for cell fate, and for her contributions to the culture of mentoring in science. She lives in Boston, Massachusetts.
M. Madan Babu is an Indian-American computational biologist and bioinformatician. He is the endowed chair in biological data science and director of the center of excellence for data-driven discovery at St. Jude Children's Research Hospital. Previously, he served as a programme leader at the MRC Laboratory of Molecular Biology (LMB).
Peter Karl Sorger is a systems and cancer biologist and Otto Krayer Professor of Systems Pharmacology in the Department of Systems Biology at Harvard Medical School. Sorger is the founding head of the Harvard Program in Therapeutic Science (HiTS), director of its Laboratory of Systems Pharmacology (LSP), and co-director of the Harvard MIT Center for Regulatory Science. He was previously a Professor of Biology and Biological Engineering at the Massachusetts Institute of Technology where he co-founded its program on Computational and Systems Biology (CSBi). Sorger is known for his work in the field of systems biology and for having helped launch the field of computational and systems pharmacology. His research focuses on the molecular origins of cancer and approaches to accelerate the development of new medicines. Sorger teaches Principles and Practice of Drug Development at Massachusetts Institute of Technology and Harvard University.