TAPS (buffer)

Last updated
TAPS
TAPS.svg
Names
Preferred IUPAC name
3-{[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl]amino}propane-1-sulfonic acid
Other names
N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.045.398 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C7H17NO6S/c9-4-7(5-10,6-11)8-2-1-3-15(12,13)14/h8-11H,1-6H2,(H,12,13,14) X mark.svgN
    Key: YNLCVAQJIKOXER-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C7H17NO6S/c9-4-7(5-10,6-11)8-2-1-3-15(12,13)14/h8-11H,1-6H2,(H,12,13,14)
    Key: YNLCVAQJIKOXER-UHFFFAOYAP
  • C(CNC(CO)(CO)CO)CS(=O)(=O)O
Properties
C7H17NO6S
Molar mass 243.27 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

TAPS ([tris(hydroxymethyl)methylamino]propanesulfonic acid) is a chemical compound commonly used to make buffer solutions.

It can bind divalent cations, including Co(II) and Ni(II). [1]

TAPS is effective to make buffer solutions in the pH range 7.7–9.1, since it has a pKa value of 8.44 (ionic strength I = 0, 25 °C). [2]

The pH (and pKa at I  0) of the buffer solution changes with concentration and temperature, and this effect may be predicted e.g. using online calculators. [3]

Related Research Articles

Acid Type of chemical substance

An acid is a molecule or ion capable of either donating a proton (i.e., hydrogen ion, H+), known as a Brønsted–Lowry acid, or, capable of forming a covalent bond with an electron pair, known as a Lewis acid.

Hydroxide Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small amount of strong acid or base is added to it. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. In nature, there are many systems that use buffering for pH regulation. For example, the bicarbonate buffering system is used to regulate the pH of blood, and bicarbonate also acts as a buffer in the ocean.

In chemistry, carbonic acid is a dibasic acid with the chemical formula H2CO3. The pure compound decomposes at temperatures greater than ca. −80 °C.

Citric acid Weak organic acid

Citric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in the metabolism of all aerobic organisms.

An acid dissociation constant, Ka, is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction

Samarium(II) iodide Chemical compound

Samarium(II) iodide is an inorganic compound with the formula SmI2. When employed as a solution for organic synthesis, it is known as Kagan's reagent. SmI2 is a green solid and solutions are green as well. It is a strong one-electron reducing agent that is used in organic synthesis.

Reference electrode Electrode with a stable and accurate electrode potential

A reference electrode is an electrode which has a stable and well-known electrode potential. The high stability of the electrode potential is usually reached by employing a redox system with constant concentrations of each participant of the redox reaction.

Phosphate-buffered saline is a buffer solution commonly used in biological research. It is a water-based salt solution containing disodium hydrogen phosphate, sodium chloride and, in some formulations, potassium chloride and potassium dihydrogen phosphate. The buffer helps to maintain a constant pH. The osmolarity and ion concentrations of the solutions match those of the human body (isotonic).

Nitroxyl Chemical compound

Nitroxyl or azanone is the chemical compound HNO. It is well known in the gas phase. Nitroxyl can be formed as a short-lived intermediate in the solution phase. The conjugate base, NO, nitroxide anion, is the reduced form of nitric oxide (NO) and is isoelectronic with dioxygen. The bond dissociation energy of H−NO is 49.5 kcal/mol (207 kJ/mol), which is unusually weak for a bond to the hydrogen atom.

Good's buffers are twenty buffering agents for biochemical and biological research selected and described by Norman Good and colleagues during 1966–1980. Most of the buffers were new zwitterionic compounds prepared and tested by Good and coworkers for the first time, though some were known compounds previously overlooked by biologists. Before Good's work, few hydrogen ion buffers between pH 6 and 8 had been accessible to biologists, and very inappropriate, toxic, reactive and inefficient buffers had often been used. Many Good's buffers became and remain crucial tools in modern biological laboratories.

PIPES Chemical compound

PIPES is the common name for piperazine-N,N′-bis(2-ethanesulfonic acid), and is a frequently used buffering agent in biochemistry. It is an ethanesulfonic acid buffer developed by Good et al. in the 1960s.

MOPS Chemical compound

MOPS is a buffer introduced by Good et al. in the 1960s. It is a structural analog to MES. Its chemical structure contains a morpholine ring. HEPES is a similar pH buffering compound that contains a piperazine ring. With a pKa of 7.20, MOPS is an excellent buffer for many biological systems at near-neutral pH.

Enzyme catalysis Catalysis of chemical reactions by specialized proteins known as enzymes

Enzyme catalysis is the increase in the rate of a process by a biological molecule, an "enzyme". Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

MES (buffer) Chemical compound

MES is the common name for the compound 2-(N-morpholino)ethanesulfonic acid. Its chemical structure contains a morpholine ring. It has a molecular weight of 195.2 and the chemical formula is C6H13NO4S. Synonyms include: 2-morpholinoethanesulfonic acid; 2-(4-morpholino)ethanesulfonic acid; 2-(N-morpholino)ethanesulfonic acid; 2-(4-morpholino)ethanesulfonic acid; MES; MES hydrate; and morpholine-4-ethanesulfonic acid hydrate. MOPS is a similar pH buffering compound which contains a propanesulfonic moiety instead of an ethanesulfonic one.

NONOate

In chemistry, a NONOate is a compound having the chemical formula R1R2N−(NO)−N=O, where R1 and R2 are alkyl groups. One example for this is 1,1-diethyl-2-hydroxy-2-nitrosohydrazine, or diethylamine dinitric oxide. These compounds are unusual in having three sequential nitrogen atoms: an amine functional group, a bridging NO group, and a terminal nitrosyl group. In contact with water, these compounds release NO (nitric oxide).

A stability constant is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions. The stability constant(s) provide(s) the information required to calculate the concentration(s) of the complex(es) in solution. There are many areas of application in chemistry, biology and medicine.

TAPSO Chemical compound

TAPSO is used to make buffer solutions. It has a pKa value of 7.635. It can be used to make buffer solutions in the pH range 7.0-8.2.

TES (buffer) Chemical compound

TES is used to make buffer solutions. It has a pKa value of 7.550. It is one of the Good's buffers and can be used to make buffer solutions in the pH range 6.8–8.2. It is one of the components of Test yolk buffer medium used for refrigeration and transport of semen.

Metal aquo complexes are coordination compounds containing metal ions with only water as a ligand. These complexes are the predominant species in aqueous solutions of many metal salts, such as metal nitrates, sulfates, and perchlorates. They have the general stoichiometry . Their behavior underpins many aspects of environmental, biological, and industrial chemistry. This article focuses on complexes where water is the only ligand, but of course many complexes are known to consist of a mix of aquo and other ligands.

References

  1. Machado, Carina M. M.; Gameiro, Paula; Soares, Helena M. V. M. (2008). "Complexation of M(buffer)x(OH)y systems involving divalent ions (cobalt or nickel) and zwitterionic biological buffers (AMPSO, DIPSO, TAPS and TAPSO) in aqueous solution". J. Solution Chem. 37 (5): 603–617. doi:10.1007/s10953-008-9265-3.
  2. Goldberg, Robert N.; Kishore, Nand; Lennen, Rebecca M. (2002). "Thermodynamic quantities for the ionization reactions of buffers" (PDF). J. Phys. Chem. Ref. Data . 31 (2): 231–370. doi:10.1063/1.1416902.
  3. "Biological buffers". REACH Devices.