TAZ zinc finger

Last updated
zf-TAZ
PDB 1f81 EBI.jpg
solution structure of the taz2 domain of the transcriptional adaptor protein cbp
Identifiers
Symbolzf-TAZ
Pfam PF02135
InterPro IPR000197
SCOP2 1f81 / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, TAZ zinc finger (Transcription Adaptor putative Zinc finger) domains are zinc-containing domains found in the homologous transcriptional co-activators CREB-binding protein (CBP) and the P300. CBP and P300 are histone acetyltransferases (EC) that catalyse the reversible acetylation of all four histones in nucleosomes, acting to regulate transcription via chromatin remodelling. These large nuclear proteins interact with numerous transcription factors and viral oncoproteins, including p53 tumour suppressor protein, E1A oncoprotein, MyoD, and GATA-1, and are involved in cell growth, differentiation and apoptosis. [1] Both CBP and P300 have two copies of the TAZ domain, one in the N-terminal region, the other in the C-terminal region. The TAZ1 domain of CBP and P300 forms a complex with CITED2 (CBP/P300-interacting transactivator with ED-rich tail), inhibiting the activity of the hypoxia inducible factor (HIF-1alpha) and thereby attenuating the cellular response to low tissue oxygen concentration. [2] Adaptation to hypoxia is mediated by transactivation of hypoxia-responsive genes by hypoxia-inducible factor-1 (HIF-1) in complex with the CBP and p300 transcriptional coactivators. [3]

The TAZ domain adopts an all-alpha fold with zinc-binding sites in the loops connecting the helices. The TAZ1 domain in P300 and the TAZ2 (CH3) domain in CBP have each been shown to have four amphipathic helices, organised by three zinc-binding clusters with HCCC-type coordination. [4] [5] [6]

Related Research Articles

<span class="mw-page-title-main">EP300</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase p300 also known as p300 HAT or E1A-associated protein p300 also known as EP300 or p300 is an enzyme that, in humans, is encoded by the EP300 gene. It functions as histone acetyltransferase that regulates transcription of genes via chromatin remodeling by allowing histone proteins to wrap DNA less tightly. This enzyme plays an essential role in regulating cell growth and division, prompting cells to mature and assume specialized functions (differentiate), and preventing the growth of cancerous tumors. The p300 protein appears to be critical for normal development before and after birth.

<span class="mw-page-title-main">PCAF</span> Protein-coding gene in the species Homo sapiens

P300/CBP-associated factor (PCAF), also known as K(lysine) acetyltransferase 2B (KAT2B), is a human gene and transcriptional coactivator associated with p53.

<span class="mw-page-title-main">CREB-binding protein</span> Nuclear protein that binds to CREB

CREB-binding protein, also known as CREBBP or CBP or KAT3A, is a coactivator encoded by the CREBBP gene in humans, located on chromosome 16p13.3. CBP has intrinsic acetyltransferase functions; it is able to add acetyl groups to both transcription factors as well as histone lysines, the latter of which has been shown to alter chromatin structure making genes more accessible for transcription. This relatively unique acetyltransferase activity is also seen in another transcription enzyme, EP300 (p300). Together, they are known as the p300-CBP coactivator family and are known to associate with more than 16,000 genes in humans; however, while these proteins share many structural features, emerging evidence suggests that these two co-activators may promote transcription of genes with different biological functions.

<span class="mw-page-title-main">SKI protein</span> Protein-coding gene in the species Homo sapiens

The SKI protein is a nuclear proto-oncogene that is associated with tumors at high cellular concentrations. SKI has been shown to interfere with normal cellular functioning by both directly impeding expression of certain genes inside the nucleus of the cell as well as disrupting signaling proteins that activate genes.

<span class="mw-page-title-main">IRF3</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 3, also known as IRF3, is an interferon regulatory factor.

<span class="mw-page-title-main">HIF1A</span> Protein-coding gene in the species Homo sapiens

Hypoxia-inducible factor 1-alpha, also known as HIF-1-alpha, is a subunit of a heterodimeric transcription factor hypoxia-inducible factor 1 (HIF-1) that is encoded by the HIF1A gene. The Nobel Prize in Physiology or Medicine 2019 was awarded for the discovery of HIF.

<span class="mw-page-title-main">Retinoid X receptor alpha</span> Protein-coding gene in the species Homo sapiens

Retinoid X receptor alpha (RXR-alpha), also known as NR2B1 is a nuclear receptor that in humans is encoded by the RXRA gene.

<span class="mw-page-title-main">CREB1</span> Mammalian protein found in Homo sapiens

CAMP responsive element binding protein 1, also known as CREB-1, is a protein that in humans is encoded by the CREB1 gene. This protein binds the cAMP response element, a DNA nucleotide sequence present in many viral and cellular promoters. The binding of CREB1 stimulates transcription.

<span class="mw-page-title-main">Zinc finger and BTB domain-containing protein 16</span> Protein-coding gene in the species Homo sapiens

Zinc finger and BTB domain-containing protein 16 is a protein that in humans is encoded by the ZBTB16 gene.

<span class="mw-page-title-main">GATA2</span> Protein-coding gene in the species Homo sapiens

GATA2 or GATA-binding factor 2 is a transcription factor, i.e. a nuclear protein which regulates the expression of genes. It regulates many genes that are critical for the embryonic development, self-renewal, maintenance, and functionality of blood-forming, lympathic system-forming, and other tissue-forming stem cells. GATA2 is encoded by the GATA2 gene, a gene which often suffers germline and somatic mutations which lead to a wide range of familial and sporadic diseases, respectively. The gene and its product are targets for the treatment of these diseases.

<span class="mw-page-title-main">KMT2A</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase 2A, also known as acute lymphoblastic leukemia 1 (ALL-1), myeloid/lymphoid or mixed-lineage leukemia1 (MLL1), or zinc finger protein HRX (HRX), is an enzyme that in humans is encoded by the KMT2A gene.

<span class="mw-page-title-main">CTBP1</span> Protein-coding gene in the species Homo sapiens

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">CREB3</span> Protein-coding gene in the species Homo sapiens

Cyclic AMP-responsive element-binding protein 3 is a protein that in humans is encoded by the CREB3 gene.

<span class="mw-page-title-main">HIF1AN</span> Protein-coding gene in the species Homo sapiens

Hypoxia-inducible factor 1-alpha inhibitor is a protein that in humans is encoded by the HIF1AN gene.

<span class="mw-page-title-main">ZBTB7A</span> Protein-coding gene in the species Homo sapiens

Zinc finger and BTB domain-containing protein 7A is a protein that in humans is encoded by the ZBTB7A gene.

<span class="mw-page-title-main">CRTC2</span> Protein-coding gene in the species Homo sapiens

CREB regulated transcription coactivator 2, also known as CRTC2, is a protein which in humans is encoded by the CRTC2 gene.

bZIP domain Protein domain

The Basic Leucine Zipper Domain is found in many DNA binding eukaryotic proteins. One part of the domain contains a region that mediates sequence specific DNA binding properties and the leucine zipper that is required to hold together (dimerize) two DNA binding regions. The DNA binding region comprises a number of basic amino acids such as arginine and lysine. Proteins containing this domain are transcription factors.

In molecular biology the ZZ-type zinc finger domain is a type of protein domain that was named because of its ability to bind two zinc ions. These domains contain 4-6 Cys residues that participate in zinc binding, including a Cys-X2-Cys motif found in other zinc finger domains. These zinc fingers are thought to be involved in protein-protein interactions. The structure of the ZZ domain shows that it belongs to the family of cross-brace zinc finger motifs that include the PHD, RING, and FYVE domains. ZZ-type zinc finger domains are found in:

<span class="mw-page-title-main">KIX domain</span>

In biochemistry, the KIX domain (kinase-inducible domain (KID) interacting domain) or CREB binding domain is a protein domain of the eukaryotic transcriptional coactivators CBP and P300. It serves as a docking site for the formation of heterodimers between the coactivator and specific transcription factors. Structurally, the KIX domain is a globular domain consisting of three α-helices and two short 310-helices.

The transactivation domain or trans-activating domain (TAD) is a transcription factor scaffold domain which contains binding sites for other proteins such as transcription coregulators. These binding sites are frequently referred to as activation functions (AFs). TADs are named after their amino acid composition. These amino acids are either essential for the activity or simply the most abundant in the TAD. Transactivation by the Gal4 transcription factor is mediated by acidic amino acids, whereas hydrophobic residues in Gcn4 play a similar role. Hence, the TADs in Gal4 and Gcn4 are referred to as acidic or hydrophobic, respectively.

References

  1. Ponting CP, Blake DJ, Davies KE, Kendrick-Jones J, Winder SJ (January 1996). "ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins". Trends Biochem. Sci. 21 (1): 11–13. doi:10.1016/s0968-0004(06)80020-4. PMID   8848831.
  2. Freedman SJ, Sun ZY, Kung AL, France DS, Wagner G, Eck MJ (July 2003). "Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2". Nat. Struct. Biol. 10 (7): 504–12. doi:10.1038/nsb936. PMID   12778114. S2CID   7652744.
  3. Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ (April 2002). "Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha". Proc. Natl. Acad. Sci. U.S.A. 99 (8): 5367–72. Bibcode:2002PNAS...99.5367F. doi: 10.1073/pnas.082117899 . PMC   122775 . PMID   11959990.
  4. De Guzman RN, Liu HY, Martinez-Yamout M, Dyson HJ, Wright PE (October 2000). "Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP". J. Mol. Biol. 303 (2): 243–53. doi:10.1006/jmbi.2000.4141. PMID   11023789.
  5. De Guzman RN, Martinez-Yamout MA, Dyson HJ, Wright PE (January 2004). "Interaction of the TAZ1 domain of the CREB-binding protein with the activation domain of CITED2: regulation by competition between intrinsically unstructured ligands for non-identical binding sites". J. Biol. Chem. 279 (4): 3042–9. doi: 10.1074/jbc.M310348200 . PMID   14594809.
  6. De Guzman RN, Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE (January 2005). "CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding". Biochemistry. 44 (2): 490–7. doi:10.1021/bi048161t. PMID   15641773.
This article incorporates text from the public domain Pfam and InterPro: IPR000197