Tasimeter

Last updated
Tasimeter Tasimetro-Tasimeter 1 Edison.jpg
Tasimeter
Tasimeter (partial cross section) PSM V14 D153 Cutaway view of the aerophone.jpg
Tasimeter (partial cross section)
Tasimeter electrical circuit for measuring carbon sensitivity PSM V17 D031 Microtasimeter measuring carbon sensitivity.jpg
Tasimeter electrical circuit for measuring carbon sensitivity

The tasimeter, or microtasimeter, or measurer of infinitesimal pressure, is a device designed by Thomas Edison to measure infrared radiation. In 1878, Samuel Langley, Henry Draper, and other American scientists needed a highly sensitive instrument that could be used to measure minute temperature changes in heat emitted from the Sun's corona during the July 29 solar eclipse, due to occur along the Rocky Mountains. To satisfy those needs Edison devised a microtasimeter employing a carbon button. [1]

Contents

Description of operation

The value of the instrument lies in its ability to detect small variations of temperature. This is accomplished indirectly. The change of temperature causes expansion or contraction of a rod of vulcanite, which changes the resistance of an electric circuit by varying the pressure it exerts upon a carbon-button included in the circuit. During the total eclipse of the sun in 1878, it successfully demonstrated the existence of heat in the corona. It is also of service in ascertaining the relative expansion of substances due to a rise of temperature. [1]

The functional parts are represented in the partial cross section, which shows its construction and mode of operation. The substance whose expansion is to be measured is shown at A. It is firmly clamped at B, its lower end fitting into a slot in the metal plate, M, which rests upon the carbon-button. The latter is in an electric circuit, which includes also a delicate galvanometer. Any variation in the length of the rod changes the pressure upon the carbon, and alters the resistance of the circuit. This causes a deflection of the galvanometer-needle—a movement in one direction denoting expansion of A, while an opposite motion signifies contraction. To avoid any deflection which might arise from change in strength of battery, the tasimeter is inserted in an arm of a Wheatstone bridge. [1]

In order to ascertain the exact amount of expansion in decimals of an inch, the screw S, seen in front of the dial, is turned until the deflection previously caused by the change of temperature is reproduced. The screw works a second screw, causing the rod to ascend or descend, and the exact distance through which the rod moves is indicated by the needle, N, on the dial. [1]

The instrument can also be advantageously used to measure changes in the humidity of the atmosphere. In this case the strip of vulcanite is replaced by one of gelatin, which changes its volume by absorbing moisture. [1]

Other uses

1878 was a time when great advances were being made in electric arc lighting, and during the solar eclipse expedition, which Edison accompanied, the men discussed the practicality of subdividing the intense arc lights so that electricity could be used for lighting in the same fashion as with small, individual gas burners. The basic problem seemed to be to keep the burner, or bulb, from being consumed by preventing it from overheating. Edison thought he would be able to solve this by fashioning a microtasimeter-like device to control the current. He announced that he would invent a safe, mild, and inexpensive electric light that would replace the gaslight. [1]

Abandonment

Edison declined to patent the device, saying it was only of interest to scientists, and allowed companies in London and Philadelphia to manufacture tasimeters royalty-free. The scientists who tested it found it too erratic to be of use for quantitative measurement purposes, and it was soon abandoned. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Ammeter</span> Device that measures electric current

An ammeter is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured.

<span class="mw-page-title-main">Voltmeter</span> Instrument used for measuring voltage

A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit.

<span class="mw-page-title-main">Electrometer</span> Instrument for measuring electric charge

An electrometer is an electrical instrument for measuring electric charge or electrical potential difference. There are many different types, ranging from historical handmade mechanical instruments to high-precision electronic devices. Modern electrometers based on vacuum tube or solid-state technology can be used to make voltage and charge measurements with very low leakage currents, down to 1 femtoampere. A simpler but related instrument, the electroscope, works on similar principles but only indicates the relative magnitudes of voltages or charges.

<span class="mw-page-title-main">Galvanometer</span> Instrument to measure electric current

A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely.

<span class="mw-page-title-main">Ohmmeter</span> Tool for measuring electrical resistance

An ohmmeter is an electrical instrument that measures electrical resistance. Multimeters also function as ohmmeters when in resistance-measuring mode. An ohmmeter applies current to the circuit or component whose resistance is to be measured. It then measures the resulting voltage and calculates the resistance using Ohm’s law .

<span class="mw-page-title-main">Multimeter</span> Electronic measuring instrument that combines several measurement functions in one unit

A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ammeter, and ohmmeter. Some feature the measurement of additional properties such as temperature and capacitance.

<span class="mw-page-title-main">Incandescent light bulb</span> Electric light bulb with a resistively heated wire filament

An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a wire filament that is heated until it glows. The filament is enclosed in a glass bulb that is either evacuated or filled with inert gas to protect the filament from oxidation. Current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

<span class="mw-page-title-main">Arc lamp</span> Lamp that produces light by an electric arc

An arc lamp or arc light is a lamp that produces light by an electric arc.

<span class="mw-page-title-main">Mirror galvanometer</span> Type of ammeter

A mirror galvanometer is an ammeter that indicates it has sensed an electric current by deflecting a light beam with a mirror. The beam of light projected on a scale acts as a long massless pointer. In 1826, Johann Christian Poggendorff developed the mirror galvanometer for detecting electric currents. The apparatus is also known as a spot galvanometer after the spot of light produced in some models.

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Strain gauge</span> Electronic component used to measure strain

A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

<span class="mw-page-title-main">Timeline of the telephone</span> Overview of the development of the modern telephone

This timeline of the telephone covers landline, radio, and cellular telephony technologies and provides many important dates in the history of the telephone.

<span class="mw-page-title-main">Carbon microphone</span> Microphone design

The carbon microphone, also known as carbon button microphone, button microphone, or carbon transmitter, is a type of microphone, a transducer that converts sound to an electrical audio signal. It consists of two metal plates separated by granules of carbon. One plate is very thin and faces toward the speaking person, acting as a diaphragm. Sound waves striking the diaphragm cause it to vibrate, exerting a varying pressure on the granules, which in turn changes the electrical resistance between the plates. Higher pressure lowers the resistance as the granules are pushed closer together. A steady direct current is passed between the plates through the granules. The varying resistance results in a modulation of the current, creating a varying electric current that reproduces the varying pressure of the sound wave. In telephony, this undulating current is directly passed through the telephone wires to the central office. In public address systems it is amplified by an audio amplifier. The frequency response of most carbon microphones, however, is limited to a narrow range, and the device produces significant electrical noise.

<span class="mw-page-title-main">History of the telephone</span> 19th-century development of the modern telephone

This history of the telephone chronicles the development of the electrical telephone, and includes a brief overview of its predecessors. The first telephone patent was granted to Alexander Graham Bell in 1869.

<span class="mw-page-title-main">Dilatometer</span> Instrument measuring volume changes

A dilatometer is a scientific instrument that measures volume changes caused by a physical or chemical process. A familiar application of a dilatometer is the mercury-in-glass thermometer, in which the change in volume of the liquid column is read from a graduated scale. Because mercury has a fairly constant rate of expansion over ambient temperature ranges, the volume changes are directly related to temperature.

A potentiometer is an instrument for measuring voltage or 'potential difference' by comparison of an unknown voltage with a known reference voltage. If a sensitive indicating instrument is used, very little current is drawn from the source of the unknown voltage. Since the reference voltage can be produced from an accurately calibrated voltage divider, a potentiometer can provide high precision in measurement. The method was described by Johann Christian Poggendorff around 1841 and became a standard laboratory measuring technique.

The frog galvanoscope was a sensitive electrical instrument used to detect voltage in the late 18th and 19th centuries. It consists of a skinned frog's leg with electrical connections to a nerve. The instrument was invented by Luigi Galvani and improved by Carlo Matteucci.

<span class="mw-page-title-main">Benjamin Osgood Peirce</span> American mathematician

Benjamin Osgood Peirce was an American mathematician and a holder of the Hollis Chair of Mathematics and Natural Philosophy at Harvard from 1888 until his death in 1914.

The Electro-Dynamic Light Company of New York was a lighting and electrical distribution company organized in 1878. The company held the patents for the first practical incandescent electric lamp and electrical distribution system of incandescent electric lighting. They also held a patent for an electric meter to measure the amount of electricity used. The inventions were those of Albon Man and William E. Sawyer. They gave the patent rights to the company, which they had formed with a group of businessmen. It was the first company in the world formally established to provided electric lighting and was the first company organized specifically to manufacture and sell incandescent electric light bulbs.

References

  1. 1 2 3 4 5 6 "Popular Science Monthly, Volume 14, December 1878" . Retrieved 31 December 2015.
  2. Baron, David (June 6, 2017). American Eclipse: A Nation's Epic Race to Catch the Shadow of the Moon and Win the Glory of the World. Liveright. p. 223. ISBN   978-1631490163.