Termination factor

Last updated

In molecular biology, a termination factor is a protein that mediates the termination of RNA transcription by recognizing a transcription terminator and causing the release of the newly made mRNA. This is part of the process that regulates the transcription of RNA to preserve gene expression integrity and are present in both eukaryotes and prokaryotes, although the process in bacteria is more widely understood. [1] The most extensively studied and detailed transcriptional termination factor is the Rho (ρ) protein of E. coli . [2]

Contents

Prokaryotic

Prokaryotes use one type of RNA polymerase, transcribing mRNAs that code for more than one type of protein. Transcription, translation and mRNA degradation all happen simultaneously. Transcription termination is essential to define boundaries in transcriptional units, a function necessary to maintain the integrity of the strands and provide quality control. Termination in E. coli may be Rho dependent, utilizing Rho factor, or Rho independent, also known as intrinsic termination. Although most operons in DNA are Rho independent, Rho dependent termination is also essential to maintain correct transcription. [1]

ρ factor The Rho protein is an RNA translocase that recognizes a cytosine-rich region of the elongating mRNA, but the exact features of the recognized sequences and how the cleaving takes place remain unknown. Rho forms a ring-shaped hexamer and advances along the mRNA, hydrolyzing ATP toward RNA polymerase (5' to 3' with respect to the mRNA). [3] [4] When the Rho protein reaches the RNA polymerase complex, transcription is terminated by dissociation of the RNA polymerase from the DNA. The structure and activity of the Rho protein is similar to that of the F1 subunit of ATP synthase, supporting the theory that the two share an evolutionary link. [4]

Rho factor is widely present in different bacterial sequences and is responsible for the genetic polarity in E. coli. It works as a sensor of translational status, inhibiting non-productive transcriptions, [5] suppressing antisense transcriptions and resolving conflicts that happen between transcription and replication. [6] The process of termination by Rho factor is regulated by attenuation and antitermination mechanisms, competing with elongation factors for overlapping utilization sites (ruts and nuts), and depends on how fast Rho can move during the transcription to catch up with the RNA polymerase and activate the termination process. [7]

Inhibition of Rho dependent termination by bicyclomycin is used to treat bacterial infections. The use of this mechanism along with other classes of antibiotics is being studied as a way to address antibiotic resistance, by suppressing the protective factors in RNA transcription while working in synergy with other inhibitors of gene expression such as tetracycline or rifampicin. [8]

Eukaryotic

The process of transcriptional termination is less understood in eukaryotes, which have extensive post-transcriptional RNA processing, and each of the three types of eukaryotic RNA polymerase have a different termination system.

In RNA polymerase I, Transcription termination factor, RNA polymerase I binds downstream of the pre-rRNA coding regions, causing the dissociation of the RNA polymerase from the template and the release of the new RNA strand.

In RNA polymerase II, the termination occurs via a polyadenylation/cleaving complex. The 3' tail on the ending of the strand is bound at the polyadenylation site, but the strand will continue to code. The newly synthesised ribonucleotides are removed one at a time by the cleavage factors CSTF and CPSF, in a process that is still not fully understood. The remainder of the strand is disengaged by a 5′-exonuclease when the transcription is finished.

RNA polymerase III terminates after a series of uracil polymerization residues in the transcribed mRNA. [1] Unlike in bacteria and in polymerase I, the termination RNA hairpin needs to be upstream to allow for correct cleaving. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Messenger RNA</span> RNA that is read by the ribosome to produce a protein

In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein.

<span class="mw-page-title-main">Transcription (biology)</span> Process of copying a segment of DNA into RNA

Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called non-coding RNAs (ncRNAs). mRNA comprises only 1–3% of total RNA samples. Less than 2% of the human genome can be transcribed into mRNA, while at least 80% of mammalian genomic DNA can be actively transcribed, with the majority of this 80% considered to be ncRNA.

<span class="mw-page-title-main">RNA polymerase</span> Enzyme that synthesizes RNA from DNA

In molecular biology, RNA polymerase, or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template.

<span class="mw-page-title-main">Rho factor</span> Prokaryotic protein

A ρ factor is a bacterial protein involved in the termination of transcription. Rho factor binds to the transcription terminator pause site, an exposed region of single stranded RNA after the open reading frame at C-rich/G-poor sequences that lack obvious secondary structure.

In genetics, a transcription terminator is a section of nucleic acid sequence that marks the end of a gene or operon in genomic DNA during transcription. This sequence mediates transcriptional termination by providing signals in the newly synthesized transcript RNA that trigger processes which release the transcript RNA from the transcriptional complex. These processes include the direct interaction of the mRNA secondary structure with the complex and/or the indirect activities of recruited termination factors. Release of the transcriptional complex frees RNA polymerase and related transcriptional machinery to begin transcription of new mRNAs.

Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In eukaryotes, polyadenylation is part of the process that produces mature mRNA for translation. In many bacteria, the poly(A) tail promotes degradation of the mRNA. It, therefore, forms part of the larger process of gene expression.

<span class="mw-page-title-main">Exonuclease</span> Class of enzymes; type of nuclease

Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is the endonuclease, which cleaves phosphodiester bonds in the middle (endo) of a polynucleotide chain. Eukaryotes and prokaryotes have three types of exonucleases involved in the normal turnover of mRNA: 5′ to 3′ exonuclease (Xrn1), which is a dependent decapping protein; 3′ to 5′ exonuclease, an independent protein; and poly(A)-specific 3′ to 5′ exonuclease.

Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping.

<span class="mw-page-title-main">Termination signal</span>

A termination signal is a sequence that signals the end of transcription or translation. Termination signals are found at the end of the part of the chromosome being transcribed during transcription of mRNA. Termination signals bring a stop to transcription, ensuring that only gene-encoding parts of the chromosome are transcribed. Transcription begins at the promoter when RNA polymerase, an enzyme that facilitates transcription of DNA into mRNA, binds to a promoter, unwinds the helical structure of the DNA, and uses the single-stranded DNA as a template to synthesize RNA. Once RNA polymerase reaches the termination signal, transcription is terminated. In bacteria, there are two main types of termination signals: intrinsic and factor-dependent terminators. In the context of translation, a termination signal is the stop codon on the mRNA that elicits the release of the growing peptide from the ribosome.

<i>trp</i> operon Operon that codes for the components for production of tryptophan

The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. The operon is regulated so that, when tryptophan is present in the environment, the genes for tryptophan synthesis are repressed.

Antitermination is the prokaryotic cell's aid to fix premature termination of RNA synthesis during the transcription of RNA. It occurs when the RNA polymerase ignores the termination signal and continues elongating its transcript until a second signal is reached. Antitermination provides a mechanism whereby one or more genes at the end of an operon can be switched either on or off, depending on the polymerase either recognizing or not recognizing the termination signal.

<span class="mw-page-title-main">Prokaryotic DNA replication</span> DNA Replication in prokaryotes

Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. Although it is often studied in the model organism E. coli, other bacteria show many similarities. Replication is bi-directional and originates at a single origin of replication (OriC). It consists of three steps: Initiation, elongation, and termination.

<span class="mw-page-title-main">Bacterial transcription</span>

Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase.

<span class="mw-page-title-main">Eukaryotic transcription</span> Transcription is heterocatalytic function of DNA

Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.

<span class="mw-page-title-main">Intrinsic termination</span>

Intrinsic, or rho-independent termination, is a process in prokaryotes to signal the end of transcription and release the newly constructed RNA molecule. In prokaryotes such as E. coli, transcription is terminated either by a rho-dependent process or rho-independent process. In the Rho-dependent process, the rho-protein locates and binds the signal sequence in the mRNA and signals for cleavage. Contrarily, intrinsic termination does not require a special protein to signal for termination and is controlled by the specific sequences of RNA. When the termination process begins, the transcribed mRNA forms a stable secondary structure hairpin loop, also known as a Stem-loop. This RNA hairpin is followed by multiple uracil nucleotides. The bonds between uracil and adenine are very weak. A protein bound to RNA polymerase (nusA) binds to the stem-loop structure tightly enough to cause the polymerase to temporarily stall. This pausing of the polymerase coincides with transcription of the poly-uracil sequence. The weak adenine-uracil bonds lower the energy of destabilization for the RNA-DNA duplex, allowing it to unwind and dissociate from the RNA polymerase. Overall, the modified RNA structure is what terminates transcription.

RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. It consists of RNA polymerase II, a subset of general transcription factors, and regulatory proteins known as SRB proteins.

Post-transcriptional regulation is the control of gene expression at the RNA level. It occurs once the RNA polymerase has been attached to the gene's promoter and is synthesizing the nucleotide sequence. Therefore, as the name indicates, it occurs between the transcription phase and the translation phase of gene expression. These controls are critical for the regulation of many genes across human tissues. It also plays a big role in cell physiology, being implicated in pathologies such as cancer and neurodegenerative diseases.

<span class="mw-page-title-main">Abortive initiation</span>

Abortive initiation, also known as abortive transcription, is an early process of genetic transcription in which RNA polymerase binds to a DNA promoter and enters into cycles of synthesis of short mRNA transcripts which are released before the transcription complex leaves the promoter. This process occurs in both eukaryotes and prokaryotes. Abortive initiation is typically studied in the T3 and T7 RNA polymerases in bacteriophages and in E. coli.

Ranjan Sen is an Indian microbiologist, biophysicist and a senior scientist as well as the head of the Laboratory of Transcription at the Centre for DNA Fingerprinting and Diagnostics. Known for his studies in the field of prokaryotic transcription, Sen is an elected fellow of the Indian National Science Academy and the National Academy of Sciences, India. The Department of Biotechnology of the Government of India awarded him the National Bioscience Award for Career Development, one of the highest Indian science awards, for his contributions to biosciences in 2007.

Transcription-translation coupling is a mechanism of gene expression regulation in which synthesis of an mRNA (transcription) is affected by its concurrent decoding (translation). In prokaryotes, mRNAs are translated while they are transcribed. This allows communication between RNA polymerase, the multisubunit enzyme that catalyzes transcription, and the ribosome, which catalyzes translation. Coupling involves both direct physical interactions between RNA polymerase and the ribosome, as well as ribosome-induced changes to the structure and accessibility of the intervening mRNA that affect transcription.

References

  1. 1 2 3 Lodish H, Berk A, Zipursky SL, et al. (2000). Molecular Cell Biology 4th edition. New York: W. H. Freeman.
  2. Boudvillain M, Figueroa-Bossi N, Bossi L (April 2013). "Terminator still moving forward: expanding roles for Rho factor". Current Opinion in Microbiology. 16 (2): 118–24. doi:10.1016/j.mib.2012.12.003. PMID   23347833.
  3. Richardson JP (July 2003). "Loading Rho to terminate transcription". Cell. 114 (2): 157–9. doi: 10.1016/s0092-8674(03)00554-3 . PMID   12887917.
  4. 1 2 Brennan CA, Dombroski AJ, Platt T (March 1987). "Transcription termination factor rho is an RNA-DNA helicase". Cell. 48 (6): 945–52. doi:10.1016/0092-8674(87)90703-3. PMID   3030561. S2CID   42011370.
  5. Roberts JW (April 2019). "Mechanisms of Bacterial Transcription Termination". Journal of Molecular Biology. 431 (20): 4030–4039. doi: 10.1016/j.jmb.2019.04.003 . PMID   30978344.
  6. Kriner MA, Sevostyanova A, Groisman EA (August 2016). "Learning from the Leaders: Gene Regulation by the Transcription Termination Factor Rho". Trends in Biochemical Sciences. 41 (8): 690–699. doi:10.1016/j.tibs.2016.05.012. PMC   4967001 . PMID   27325240.
  7. Qayyum MZ, Dey D, Sen R (April 2016). "Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli". The Journal of Biological Chemistry. 291 (15): 8090–108. doi: 10.1074/jbc.M115.701268 . PMC   4825012 . PMID   26872975.
  8. Malik M, Li L, Zhao X, Kerns RJ, Berger JM, Drlica K (December 2014). "Lethal synergy involving bicyclomycin: an approach for reviving old antibiotics". The Journal of Antimicrobial Chemotherapy. 69 (12): 3227–35. doi:10.1093/jac/dku285. PMC   4228776 . PMID   25085655.
  9. Nielsen S, Yuzenkova Y, Zenkin N (June 2013). "Mechanism of eukaryotic RNA polymerase III transcription termination". Science. 340 (6140): 1577–80. Bibcode:2013Sci...340.1577N. doi:10.1126/science.1237934. PMC   3760304 . PMID   23812715.