Tetrabutylammonium

Last updated
Tetrabutylammonium
Tetrabutylammonium.svg
Names
Preferred IUPAC name
N,N,N-Tributylbutan-1-aminium
Other names
Tetrabutylammonium
Tetrabutylazanium
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
PubChem CID
UNII
  • InChI=1S/C16H36N/c1-5-9-13-17(14-10-6-2,15-11-7-3)16-12-8-4/h5-16H2,1-4H3/q+1 Yes check.svgY
    Key: DZLFLBLQUQXARW-UHFFFAOYSA-N
  • CCCC[N+](CCCC)(CCCC)CCCC
Properties
C16H36N+
Molar mass 242.470 g·mol−1
Related compounds
Related compounds
tetrabutylammonium fluoride
tetrabutylammonium bromide
tetrabutylammonium hydroxide
tetrabutylammonium hydroxide
tetrabutylammonium hexafluorophosphate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetrabutylammonium is a quaternary ammonium cation with the formula [N(C4H9)4]+, also denoted [NBu4]+ (where Bu = butyl group). It is used in the research laboratory to prepare lipophilic salts of inorganic anions. Relative to tetraethylammonium derivatives, tetrabutylammonium salts are more lipophilic but crystallize less readily.

Contents

Derivatives

Some tetrabutylammonium salts of simple anions include:

Some tetrabutylammonium salts of more complex examples include:

See also

Related Research Articles

<span class="mw-page-title-main">Phosphonium</span> Family of polyatomic cations containing phosphorus

In chemistry, the term phosphonium describes polyatomic cations with the chemical formula PR+
4
. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.

<span class="mw-page-title-main">Hexol</span> Chemical compound

In chemistry, hexol is a cation with formula {[Co(NH3)4(OH)2]3Co}6+ — a coordination complex consisting of four cobalt cations in oxidation state +3, twelve ammonia molecules NH
3
, and six hydroxy anions HO
, with a net charge of +6. The hydroxy groups act as bridges between the central cobalt atom and the other three, which carry the ammonia ligands.

<span class="mw-page-title-main">Iron pentacarbonyl</span> Chemical compound

Iron pentacarbonyl, also known as iron carbonyl, is the compound with formula Fe(CO)5. Under standard conditions Fe(CO)5 is a free-flowing, straw-colored liquid with a pungent odour. Older samples appear darker. This compound is a common precursor to diverse iron compounds, including many that are useful in small scale organic synthesis.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

<span class="mw-page-title-main">Selenium tetrafluoride</span> Chemical compound

Selenium tetrafluoride (SeF4) is an inorganic compound. It is a colourless liquid that reacts readily with water. It can be used as a fluorinating reagent in organic syntheses (fluorination of alcohols, carboxylic acids or carbonyl compounds) and has advantages over sulfur tetrafluoride in that milder conditions can be employed and it is a liquid rather than a gas.

<span class="mw-page-title-main">Metal nitrosyl complex</span> Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

<span class="mw-page-title-main">Hexafluorophosphate</span> Anion with the chemical formula PF6–

Hexafluorophosphate is an anion with chemical formula of [PF6]. It is an octahedral species that imparts no color to its salts. [PF6] is isoelectronic with sulfur hexafluoride, SF6, and the hexafluorosilicate dianion, [SiF6]2−, and hexafluoroantimonate [SbF6]. In this anion, phosphorus has a valence of 5. Being poorly nucleophilic, hexafluorophosphate is classified as a non-coordinating anion.

<span class="mw-page-title-main">Triosmium dodecacarbonyl</span> Chemical compound

Triosmium dodecacarbonyl is a chemical compound with the formula Os3(CO)12. This yellow-colored metal carbonyl cluster is an important precursor to organo-osmium compounds. Many of the advances in cluster chemistry have arisen from studies on derivatives of Os3(CO)12 and its lighter analogue Ru3(CO)12.

<span class="mw-page-title-main">Tetraphenylphosphonium chloride</span> Chemical compound

Tetraphenylphosphonium chloride is the chemical compound with the formula [(C6H5)4P]Cl, abbreviated Ph4PCl or PPh4Cl or [PPh4]Cl, where Ph stands for phenyl. Tetraphenylphosphonium and especially tetraphenylarsonium salts were formerly of interest in gravimetric analysis of perchlorate and related oxyanions. This colourless salt is used to generate lipophilic salts from inorganic and organometallic anions. Thus, [Ph4P]+ is useful as a phase-transfer catalyst, again because it allows inorganic anions to dissolve in organic solvents.

Tetrabutylammonium bromide Chemical compound

Tetrabutylammonium bromide (TBAB) is a quaternary ammonium salt with a bromide commonly used as a phase transfer catalyst. It is used to prepare many other tetrabutylammonium salts by salt metathesis reactions. The anhydrous form is a white solid.

<span class="mw-page-title-main">Bromopentacarbonylrhenium(I)</span> Chemical compound

Bromopentacarbonylrhenium(I) is an inorganic compound of rhenium, commonly used for the syntheses of other rhenium complexes.

<span class="mw-page-title-main">Tetrabutylammonium tribromide</span> Chemical compound

Tetrabutylammonium tribromide, abbreviated to TBATB, is a pale orange solid with the formula [N(C4H9)4]Br3. It is a salt of the lipophilic tetrabutylammonium cation and the linear tribromide anion. The salt is sometimes used as a reagent used in organic synthesis as a conveniently weighable, solid source of bromine.

<span class="mw-page-title-main">Metal bis(trimethylsilyl)amides</span>

Metal bis(trimethylsilyl)amides are coordination complexes composed of a cationic metal M with anionic bis(trimethylsilyl)amide ligands (the N 2 monovalent anion, or −N 2 monovalent group, and are part of a broader category of metal amides.

<span class="mw-page-title-main">Potassium octachlorodirhenate</span> Chemical compound

Potassium octachlorodirhenate(III) is an inorganic compound with the formula K2Re2Cl8. This dark blue salt is well known as an early example of a compound featuring quadruple bond between its metal centers. Although the compound has no practical value, its characterization was significant in opening a new field of research into complexes with quadruple bonds.

Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

<span class="mw-page-title-main">Tetrabutylammonium chloride</span> Quaternary ammonium salt of chloride

Tetrabutylammonium chloride is the organic compound with the formula [(CH3CH2CH2CH2)4N]+Cl, often abbreviated as [Bu4N]Cl, where Bu stands for n-butyl. A white water-soluble solid, it is a quaternary ammonium salt of chloride. It is a precursor to other tetrabutylammonium salts. Often tetrabutylammonium bromide is preferred as a source of tetrabutylammonium because it is less hygroscopic than the chloride.

<span class="mw-page-title-main">Transition metal ether complex</span>

In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.

Rhenium compounds are compounds formed by the transition metal rhenium (Re). Rhenium can form in many oxidation states, and compounds are known for every oxidation state from -3 to +7 except -2, although the oxidation states +7, +4, and +3 are the most common. Rhenium is most available commercially as salts of perrhenate, including sodium and ammonium perrhenates. These are white, water-soluble compounds. The tetrathioperrhenate anion [ReS4] is possible.

<span class="mw-page-title-main">Disulfidobis(tricarbonyliron)</span> Chemical compound

Disulfidobis(tricarbonyliron), or Fe2(μ-S2)(CO)6, is an organometallic molecule used as a precursor in the synthesis of iron-sulfur compounds. Popularized as a synthetic building block by Dietmar Seyferth, Fe2(μ-S2)(CO)6 is commonly used to make mimics of the H-cluster in [FeFe]-hydrogenase. Much of the reactivity of Fe2(μ-S2)(CO)6 proceeds through its sulfur-centered dianion, [Fe2(μ-S)2(CO)2]2-.

References

  1. Shi, Erbo; Shao, Ying; Chen, Shulin; Hu, Huayou; Liu, Zhaojun; Zhang, Jie; Wan, Xiaobing (2012-07-06). "Tetrabutylammonium Iodide Catalyzed Synthesis of Allylic Ester with tert-Butyl Hydroperoxide as an Oxidant". Organic Letters. 14 (13): 3384–3387. doi:10.1021/ol3013606. ISSN   1523-7060. PMID   22731787.
  2. Klemperer, W. G. (1990). "Tetrabutylammonium Isopolyoxometalates". Inorganic Syntheses. Vol. 27. pp. 74–85. doi:10.1002/9780470132586.ch15. ISBN   9780470132586.
  3. Bojes, J.; Chivers, T.; Drummond, I. (1978). "Heptathiazocine(Heptasulfurimide) and Tetrabutylammonium Tetrathionitrate". Inorganic Syntheses. Vol. 18. pp. 203–206. doi:10.1002/9780470132494.ch36. ISBN   9780470132494.
  4. Ceriotti, A.; Longoni, G.; Marchionna, M. (1989). "Bis(Tetrabutylammonium) Hexa-μ-Carbonyl-Hexacarbonylhexaplatinate(2 -), [N(C 4 H 9 ) 4]2[Pt 6 (Co) 6 (μ-Co) 6]". Inorganic Syntheses. Vol. 26. pp. 316–319. doi:10.1002/9780470132579.ch57. ISBN   978-0-471-50485-6.
  5. Christou, George; Garner, C. David; Balasubramaniam, A.; Ridge, Brian; Rydon, H. N. (1982). "9. Tetranuclear Iron-Sulfur and Iron-Selenium Clusters". Tetranuclear Iron-Sulfur and Iron-Selenium Clusters. Inorganic Syntheses. Vol. 21. pp. 33–37. doi:10.1002/9780470132524.ch9. ISBN   9780470132524..
  6. Barder, T. J.; Walton, R. A. (1990). "Tetrabutylammonium Octachlorodirhenate(III)". Inorganic Syntheses. Vol. 28. pp. 332–334. doi:10.1002/9780470132593.ch83. ISBN   9780470132593.