Author | Fred Adams and Gregory Laughlin |
---|---|
Country | United States |
Language | English |
Genre | Popular science |
Publisher | Free Press Publishers |
Publication date | 1999 |
Media type | |
Pages | 251 pp. |
ISBN | 978-0-684-86576-8 |
OCLC | 44402328 |
The Five Ages of the Universe is a popular science book written by astrophysicists Fred Adams and Gregory P. Laughlin [1] about the future of an expanding universe first published in 1999. [2] [3]
The book The Five Ages of the Universe discusses the history, present state, and probable future of the universe, according to cosmologists' current understanding. The book divides the timeline of the universe into five eras: the Primordial Era, the Stelliferous Era, the Degenerate Era, the Black Hole Era and the Dark Era.
In addition to explaining current cosmological theory, the authors speculate on what kinds of life might exist in future eras of the universe. The speculation is based on a scaling hypothesis, credited to Freeman Dyson, the idea being, that all other things being equal the rate of metabolism—and therefore rate of consciousness—of an organism should be in direct proportion to the temperature at which that organism thrives. The authors envision life forms completely different from the biochemical ones of Earth, for example, based on networked black holes.
The time scales treated in the book are sufficiently vast, that, the authors find it convenient to use scientific notation. They refer to the "nth cosmological decade," meaning 10n years after the Big Bang. In what follows, n refers to the cosmological decade.
The Primordial Era is defined as "−50 < n < 5". In this era, the Big Bang, the subsequent inflation, and Big Bang nucleosynthesis are thought to have taken place. Toward the end of this age, the recombination of electrons with nuclei made the universe transparent for the first time. The authors discuss the horizon and flatness problems.
The Stelliferous Era, is defined as, "6 < n < 14". This is the current era, in which matter is arranged in the form of stars, galaxies, and galaxy clusters, and most energy is produced in stars. Stars will be the most dominant objects of the universe in this era. Massive stars use up their fuel very rapidly, in as little as a few million years. Eventually, the only luminous stars remaining will be white dwarf stars. By the end of this era, bright stars as we know them will be gone, their nuclear fuel exhausted, and only white dwarfs, brown dwarfs, neutron stars and black holes will remain. In this section, Olbers' paradox is discussed.
The Degenerate Era is defined as "15 < n < 39". This is the era of brown dwarfs, white dwarfs, neutron stars and black holes. White dwarfs will assimilate dark matter and continue with a nominal energy output. As this era continues, the authors hypothesize that protons will begin to decay (violating the conservation of baryon number given by the Standard Model). If proton decay takes place, the sole survivors will be black holes. If so, life becomes nearly impossible as planets decay.
The Black Hole Era is defined as "40 < n < 100". In this era, according to the book, organized matter will remain only in the form of black holes. Black holes themselves slowly "evaporate" away the matter contained in them, by the quantum mechanical process of Hawking radiation. By the end of this era, only extremely low-energy photons, electrons, positrons, and neutrinos will remain.
The Dark Era is defined as "n > 101". By this era, with only very diffuse matter remaining, activity in the universe will have tailed off dramatically, with very low energy levels and very large time scales. Electrons and positrons drifting through space will encounter one another and occasionally form positronium atoms. These structures are unstable, however, and their constituent particles must eventually annihilate. Other low-level annihilation events will also take place, albeit very slowly. Essentially, the universe will eventually turn into a void.
The book was published in 1999. As of November 2013 [update] , Gregory Laughlin makes the following statement on his web site: [4]
A large number of interesting developments have occurred in physics and astronomy since the book was written, and many of these advances have a strong impact on our understanding of how the future will unfold. Fred and I are currently working on an update of the material in The Five Ages.
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. It was first proposed in 1927 by Roman Catholic priest and physicist Georges Lemaître. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang.
In astronomy, dark matter is a hypothetical form of matter that appears not to interact with light or the electromagnetic field. Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be seen. Such effects occur in the context of formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background anisotropies.
In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×1034 years.
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.
In physical cosmology, Big Bang nucleosynthesis is the production of nuclei other than those of the lightest isotope of hydrogen during the early phases of the universe. This type of nucleosynthesis is thought by most cosmologists to have occurred from 10 seconds to 20 minutes after the Big Bang. It is thought to be responsible for the formation of most of the universe's helium, along with small fractions of the hydrogen isotope deuterium, the helium isotope helium-3 (3He), and a very small fraction of the lithium isotope lithium-7 (7Li). In addition to these stable nuclei, two unstable or radioactive isotopes were produced: the heavy hydrogen isotope tritium and the beryllium isotope beryllium-7 (7Be). These unstable isotopes later decayed into 3He and 7Li, respectively, as above.
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing hydrogen and helium. The rest is traces of other elements such as lithium and the hydrogen isotope deuterium. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium remains small, so that the universe still has approximately the same composition.
A black dwarf is a theoretical stellar remnant, specifically a white dwarf that has cooled sufficiently to no longer emit significant heat or light. Because the time required for a white dwarf to reach this state is calculated to be longer than the current age of the universe, no black dwarfs are expected to exist in the universe at the present time. The temperature of the coolest white dwarfs is one observational limit on the universe's age.
A MAssive Compact Halo Object (MACHO) is a kind of astronomical body that might explain the apparent presence of dark matter in galaxy halos. A MACHO is a body that emits little or no radiation and drifts through interstellar space unassociated with any planetary system. Since MACHOs are not luminous, they are hard to detect. MACHO candidates include black holes or neutron stars as well as brown dwarfs and unassociated planets. White dwarfs and very faint red dwarfs have also been proposed as candidate MACHOs. The term was coined by astrophysicist Kim Griest.
In astronomy, the term compact object refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter.
A non-standard cosmology is any physical cosmological model of the universe that was, or still is, proposed as an alternative to the then-current standard model of cosmology. The term non-standard is applied to any theory that does not conform to the scientific consensus. Because the term depends on the prevailing consensus, the meaning of the term changes over time. For example, hot dark matter would not have been considered non-standard in 1990, but would have been in 2010. Conversely, a non-zero cosmological constant resulting in an accelerating universe would have been considered non-standard in 1990, but is part of the standard cosmology in 2010.
A strange star is a hypothetical compact astronomical object, a quark star made of strange quark matter.
In physical cosmology, structure formation is the formation of galaxies, galaxy clusters and larger structures from small early density fluctuations. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies. Structure formation attempts to model how these structures were formed by gravitational instability of small early ripples in spacetime density or another emergence.
The cosmic neutrino background is the universe's background particle radiation composed of neutrinos. They are sometimes known as relic neutrinos.
This is the timeline of the Universe from Big Bang to Heat Death scenario. The different eras of the universe are shown. The heat death will occur in around 1.7×10106 years, if protons decay.
Current observations suggest that the expansion of the universe will continue forever. The prevailing theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario once popularly called "Heat Death" is now known as the "Big Chill" or "Big Freeze".
The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.
In Big Bang cosmology, neutrino decoupling was the epoch at which neutrinos ceased interacting with other types of matter, and thereby ceased influencing the dynamics of the universe at early times. Prior to decoupling, neutrinos were in thermal equilibrium with protons, neutrons and electrons, which was maintained through the weak interaction. Decoupling occurred approximately at the time when the rate of those weak interactions was slower than the rate of expansion of the universe. Alternatively, it was the time when the time scale for weak interactions became greater than the age of the universe at that time. Neutrino decoupling took place approximately one second after the Big Bang, when the temperature of the universe was approximately 10 billion kelvin, or 1 MeV.
In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression typically needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.
In astronomy, the lithium problem or lithium discrepancy refers to the discrepancy between the primordial abundance of lithium as inferred from observations of metal-poor halo stars in our galaxy and the amount that should theoretically exist due to Big Bang nucleosynthesis+WMAP cosmic baryon density predictions of the CMB. Namely, the most widely accepted models of the Big Bang suggest that three times as much primordial lithium, in particular lithium-7, should exist. This contrasts with the observed abundance of isotopes of hydrogen and helium that are consistent with predictions. The discrepancy is highlighted in a so-called "Schramm plot", named in honor of astrophysicist David Schramm, which depicts these primordial abundances as a function of cosmic baryon content from standard BBN predictions.