Theaflavin digallate

Last updated
Theaflavin digallate
Theaflavin digallate.png
Names
Systematic IUPAC name
3-Hydroxy-5-oxo-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-2-yl]-5H-benzo[7]annulene-4,6-diyl bis(3,4,5-trihydroxybenzoate)
Other names
TFDG
TF-3
Theaflavin-3,3'-digallate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C43H32O20/c44-17-7-23(46)21-12-29(52)39(60-32(21)9-17)14-1-19-20(40-30(53)13-22-24(47)8-18(45)10-33(22)61-40)11-31(54)41(63-43(59)16-4-27(50)37(56)28(51)5-16)35(19)38(57)34(6-14)62-42(58)15-2-25(48)36(55)26(49)3-15/h1-11,29-30,39-40,44-56H,12-13H2/t29-,30-,39-,40-/m1/s1 Yes check.svgY
    Key: FJYGFTHLNNSVPY-BBXLVSEPSA-N Yes check.svgY
  • InChI=1/C43H32O20/c44-17-7-23(46)21-12-29(52)39(60-32(21)9-17)14-1-19-20(40-30(53)13-22-24(47)8-18(45)10-33(22)61-40)11-31(54)41(63-43(59)16-4-27(50)37(56)28(51)5-16)35(19)38(57)34(6-14)62-42(58)15-2-25(48)36(55)26(49)3-15/h1-11,29-30,39-40,44-56H,12-13H2/t29-,30-,39-,40-/m1/s1
    Key: FJYGFTHLNNSVPY-BBXLVSEPBI
  • Oc1cc(cc(O)c1O)C(=O)Oc5c(O)cc([C@H]2Oc3cc(O)cc(O)c3C[C@H]2O)c6\C=C(/C=C(/OC(=O)c4cc(O)c(O)c(O)c4)C(=O)c56)[C@H]7Oc8cc(O)cc(O)c8C[C@H]7O
Properties
C43H32O20
Molar mass 868.709 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Theaflavin digallate (TFDG) is an antioxidant natural phenol found in black tea, and a theaflavin derivative.

Health

Related Research Articles

<span class="mw-page-title-main">Gallic acid</span> 3,4,5-Trihydroxybenzoic acid

Gallic acid (also known as 3,4,5-trihydroxybenzoic acid) is a trihydroxybenzoic acid with the formula C6H2(OH)3CO2H. It is classified as a phenolic acid. It is found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. It is a white solid, although samples are typically brown owing to partial oxidation. Salts and esters of gallic acid are termed "gallates".

<span class="mw-page-title-main">Flavonoid</span> Class of plant and fungus secondary metabolites

Flavonoids are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans.

<span class="mw-page-title-main">Flavan-3-ol</span> Category of polyphenol compound

Flavan-3-ols are a subgroup of flavonoids. They are derivatives of flavans that possess a 2-phenyl-3,4-dihydro-2H-chromen-3-ol skeleton. Flavan-3-ols are structurally diverse and include a range of compounds, such as catechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins, theaflavins, thearubigins. They play a part in plant defense and are present in the majority of plants.

<span class="mw-page-title-main">Ionophore</span> Chemical entity that reversibly binds ions

In chemistry, an ionophore is a chemical species that reversibly binds ions. Many ionophores are lipid-soluble entities that transport ions across the cell membrane. Ionophores catalyze ion transport across hydrophobic membranes, such as liquid polymeric membranes or lipid bilayers found in the living cells or synthetic vesicles (liposomes). Structurally, an ionophore contains a hydrophilic center and a hydrophobic portion that interacts with the membrane.

<span class="mw-page-title-main">Quercetin</span> Chemical compound

Quercetin is a plant flavonol from the flavonoid group of polyphenols. It is found in many fruits, vegetables, leaves, seeds, and grains; capers, red onions, and kale are common foods containing appreciable amounts of it. It has a bitter flavor and is used as an ingredient in dietary supplements, beverages, and foods.

An angiogenesis inhibitor is a substance that inhibits the growth of new blood vessels (angiogenesis). Some angiogenesis inhibitors are endogenous and a normal part of the body's control and others are obtained exogenously through pharmaceutical drugs or diet.

<span class="mw-page-title-main">Proteasome inhibitor</span>

Proteasome inhibitors are drugs that block the action of proteasomes, cellular complexes that break down proteins. They are being studied in the treatment of cancer; three are approved for use in treating multiple myeloma.

<span class="mw-page-title-main">Genistein</span> Chemical compound

Genistein (C15H10O5) is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones. It is described as an angiogenesis inhibitor and a phytoestrogen.

<span class="mw-page-title-main">11β-Hydroxysteroid dehydrogenase type 1</span> Mammalian protein found in Homo sapiens

11β-Hydroxysteroid dehydrogenase type 1, also known as cortisone reductase, is an NADPH-dependent enzyme highly expressed in key metabolic tissues including liver, adipose tissue, and the central nervous system. In these tissues, HSD11B1 reduces cortisone to the active hormone cortisol that activates glucocorticoid receptors. It belongs to the family of short-chain dehydrogenases. It is encoded by the HSD11B1 gene.

Entry inhibitors, also known as fusion inhibitors, are a class of antiviral drugs that prevent a virus from entering a cell, for example, by blocking a receptor. Entry inhibitors are used to treat conditions such as HIV and hepatitis D.

Thearubigins are polymeric polyphenols that are formed during the enzymatic oxidation and condensation of two gallocatechins with the participation of polyphenol oxidases during the fermentation reactions in black tea. Thearubigins are red in colour and are responsible for much of the staining effect of tea. Therefore, a black tea often appears red while a green or white tea has a much clearer appearance. The colour of a black tea, however, is affected by many other factors as well, such as the amount of theaflavins, another oxidized form of polyphenols.

<span class="mw-page-title-main">Epigallocatechin gallate</span> Catechin (polyphenol) in tea

Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is the ester of epigallocatechin and gallic acid, and is a type of catechin.

<span class="mw-page-title-main">Honokiol</span> Chemical compound

Honokiol is a lignan isolated from the bark, seed cones, and leaves of trees belonging to the genus Magnolia. It has been identified as one of the chemical compounds in some traditional eastern herbal medicines along with magnolol, 4-O-methylhonokiol, and obovatol.

<span class="mw-page-title-main">Theaflavin-3-gallate</span> Chemical compound

Theaflavin-3-gallate is a theaflavin derivative. It can be found in abundance in black tea and is produced during fermentation. It has been studied as a cancer-fighting chemical when combined with cisplatin against ovarian cancer cells. Consuming large amounts of black tea has been reported to reduce the effects of aging in female populations.

<span class="mw-page-title-main">Protocatechuic acid</span> Chemical compound

Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies. It is produced commercially from vanillin.

<span class="mw-page-title-main">Prodelphinidin</span>

Prodelphinidin is a name for the polymeric tannins composed of gallocatechin. It yields delphinidin during depolymerisation under oxidative conditions.

<span class="mw-page-title-main">Gallocatechin gallate</span> Chemical compound

Gallocatechin gallate (GCG) is the ester of gallocatechin and gallic acid and a type of catechin. It is an epimer of epigallocatechin gallate (EGCG).

<span class="mw-page-title-main">Phenolic content in tea</span> Natural plant compounds

The phenolic content in tea refers to the phenols and polyphenols, natural plant compounds which are found in tea. These chemical compounds affect the flavor and mouthfeel of tea. Polyphenols in tea include catechins, theaflavins, tannins, and flavonoids.

<span class="mw-page-title-main">Axelopran</span> Chemical compound

Axelopran is a drug which is under development by Theravance Biopharma and licensed to Glycyx for all indications. It acts as a peripherally acting μ-opioid receptor antagonist and also acts on κ-, and δ-opioid receptors, with similar affinity for the μ- and κ-opioid receptors and about an order of magnitude lower affinity for the δ-opioid receptor. Recent data suggests that μ-opioid antagonists have a direct effect on overall survival in patients with advanced cancer.

References

  1. Lin, Jen-Kun; Chen, Ping-Chung; Ho, Chi-Tang; Lin-Shiau, Shoei-Yn (2000). "Inhibition of Xanthine Oxidase and Suppression of Intracellular Reactive Oxygen Species in HL-60 Cells by Theaflavin-3,3'-digallate, (−)-Epigallocatechin-3-gallate, and Propyl Gallate". Journal of Agricultural and Food Chemistry. 48 (7): 2736–2743. doi:10.1021/jf000066d. PMID   10898615.
  2. Leong, Hoyee; Mathur, Priya S.; Greene, Geoffrey L. (2009). "Green tea catechins inhibit angiogenesis through suppression of STAT3 activation". Breast Cancer Research and Treatment. 117 (3): 505–515. doi:10.1007/s10549-008-0196-x. ISSN   0167-6806. PMC   3664280 . PMID   18821062.
  3. Moyle, Christina W. A.; Cerezo, Ana B.; Winterbone, Mark S.; Hollands, Wendy J.; Alexeev, Yuri; Needs, Paul W.; Kroon, Paul A. (2015). "Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: Relevance to angiogenesis". Molecular Nutrition & Food Research. 59 (3): 401–412. doi:10.1002/mnfr.201400478. ISSN   1613-4125. PMC   4681316 . PMID   25546248.
  4. Ann Beltz, Lisa; Kay Bayer, Diana; Lynn Moss, Amber; Mitchell Simet, Ira (2006-09-01). "Mechanisms of Cancer Prevention by Green and Black Tea Polyphenols". Anti-Cancer Agents in Medicinal Chemistry. 6 (5): 389–406. doi:10.2174/187152006778226468. PMID   17017850.
  5. Chia-Nan Chen1, Coney P. C. Lin, Kuo-Kuei Huang, Wei-Cheng Chen, Hsin-Pang Hsieh, Po-Huang Liang and John T.-A. Hsu (2005). "Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3'-digallate (TF3)". Evidence-Based Complementary and Alternative Medicine. 2 (2): 209–215. doi:10.1093/ecam/neh081. PMC   1142193 . PMID   15937562.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)