Thermodesulfobacterium hydrogeniphilum

Last updated

Thermodesulfobacterium hydrogeniphilum
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
T. hydrogeniphilum

Jeanthon et al. 2002
Binomial name
Thermodesulfobacterium hydrogeniphilum

Thermodesulfobacterium hydrogeniphilum is a species of Sulfate-reducing bacteria. It is thermophilic, chemolithoautotrophic, non-spore-forming, marine species, with type strain SL6T (=DSM 14290T =JCM 11239T). [1]

Contents

Related Research Articles

The Thermomicrobia is a group of thermophilic green non-sulfur bacteria. Based on species Thermomicrobium roseum and Sphaerobacter thermophilus, this bacteria class has the following description:

<i>Thermus</i> Genus of bacteria

Thermus is a genus of thermophilic bacteria. It is one of several bacteria belonging to the Deinococcus–Thermus group. It includes the following species:

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product or these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur.Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H2 as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds.In general, sulfate-reducing bacteria, are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

Thermoanaerobacter is a genus in the phylum Firmicutes (Bacteria). Members of this genus are thermophilic and anaerobic, several of them were previously described as Clostridium species and members of the now obsolete genera Acetogenium and Thermobacteroides

Desulfosporosinus is a genus of strictly anaerobic, sulfate-reducing bacteria, often found in soil.

Deferribacter autotrophicus is an iron-reducing bacteria. It is thermophilic, anaerobic, chemolithoautotrophic, motile, straight to bent rod-shaped with one polar flagellum, 0.5–0.6 µm in width and 3.0–3.5 µm in length. The type strain is SL50T.

Desulfovibrio gracilis is a moderately halophilic bacteria. It is sulfate-reducing, mesophilic and motile. Its type strain is SRL6146T.

Caminibacter hydrogeniphilus is a species of thermophilic, hydrogen-oxidizing bacterium. It is anaerobic, rod-shaped, motile and has polar flagella. The type strain is AM1116T.

Persephonella guaymasensis is a thermophilic, hydrogen-oxidizing microaerophile first isolated from a deep-sea hydrothermal vent. It is strictly chemolithoautotrophic, microaerophilic, motile, 2-4 micrometres in size, rod-shaped, Gram-negative and non-sporulating. Its type strain is EX-H2T.

Desulfotomaculum arcticum is a spore-forming, moderately thermophilic, sulfate-reducing bacterium. Its type strain is 15T.

Desulfacinum hydrothermale is a thermophilic sulfate-reducing bacterium. Its cells are oval-shaped, 0.8–1 μm in width and 1.5–2.5 μm in length, motile and Gram-negative. The type strain is MT-96T.

Caminibacter profundus is a species of moderately thermophilic, microaerobic to anaerobic, chemolithoautotrophic bacterium. It is a Gram-negative, non-motile rod, with type strain CRT.

Bosea lupini is a bacterium from the genus of Bosea. B. lupini is an aerobic and gram-negative bacterium capable of chemolithoautotrophic growth.

Tepidibacter is a genus of Gram-positive bacteria in the family Clostridiaceae.

Desulfovibrio bizertensis is a weakly halotolerant, strictly anaerobic, sulfate-reducing and motile bacterium from the genus of Desulfovibrio which has been isolated from marine sediments from Tunisia.

Caldimicrobium rimae is an extremely thermophilic, strictly anaerobic and facultatively chemolithoautotrophic bacterium from the genus of Caldimicrobium which has been isolated from the Treshchinnyi Spring from Uzon Caldera in Russia.

Nautilia abyssi is a thermophilic, sulfur-reducing and strictly anaerobic bacterium from the genus of Nautilia which has been isolated from a hydrothermal chimney from the East Pacific Rise.

Caminibacter mediatlanticus is a Gram-negative, anaerobic, chemolithoautotrophic, thermophilic bacterium from the genus of Caminibacter which has been isolated from a hydrothermal vent from the Mid-Atlantic Ridge.

Effusibacillus pohliae is a species of Gram positive, aerobic, thermophilic bacterium. The cells are rod-shaped and form spores. It was first isolated from Mount Melbourne, Antarctica. The species is named after the genus of Pohlia nutans, a species of moss that was colonizing the area where the type strain was isolated. E. pohliae has also been isolated from a geothermal heat pump in South Korea.

Thermodesulfobacterium hveragerdense is a bacterial species belonging to genus Thermodesulfobacterium, which are thermophilic sulfate-reducing bacteria. This species is found in aquatic areas of high temperature, and lives in freshwater like most, but not all Thermodesulfobacterium species It was first isolated from hotsprings in Iceland.

References

  1. Jeanthon C, L'Haridon S, Cueff V, Banta A, Reysenbach AL, Prieur D (May 2002). "Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium". International Journal of Systematic and Evolutionary Microbiology . 52 (Pt 3): 765–72. doi:10.1099/ijs.0.02025-0. PMID   12054236 . Retrieved 2013-09-08.

Further reading