Theta correspondence

Last updated

In mathematics, the theta correspondence or Howe correspondence is a mathematical relation between representations of two groups of a reductive dual pair. The local theta correspondence relates irreducible admissible representations over a local field, while the global theta correspondence relates irreducible automorphic representations over a global field.

Contents

The theta correspondence was introduced by Roger Howe in Howe (1979). Its name arose due to its origin in André Weil's representation theoretical formulation of the theory of theta series in Weil (1964). The Shimura correspondence as constructed by Jean-Loup Waldspurger in Waldspurger (1980) and Waldspurger (1991) may be viewed as an instance of the theta correspondence.

Statement

Setup

Let be a local or a global field, not of characteristic . Let be a symplectic vector space over , and the symplectic group.

Fix a reductive dual pair in . There is a classification of reductive dual pairs. [1] [2]

Local theta correspondence

is now a local field. Fix a non-trivial additive character of . There exists a Weil representation of the metaplectic group associated to , which we write as .

Given the reductive dual pair in , one obtains a pair of commuting subgroups in by pulling back the projection map from to .

The local theta correspondence is a 1-1 correspondence between certain irreducible admissible representations of and certain irreducible admissible representations of , obtained by restricting the Weil representation of to the subgroup . The correspondence was defined by Roger Howe in Howe (1979). The assertion that this is a 1-1 correspondence is called the Howe duality conjecture.

Key properties of local theta correspondence include its compatibility with Bernstein-Zelevinsky induction [3] and conservation relations concerning the first occurrence indices along Witt towers . [4]

Global theta correspondence

Stephen Rallis showed a version of the global Howe duality conjecture for cuspidal automorphic representations over a global field, assuming the validity of the Howe duality conjecture for all local places. [5]

Howe duality conjecture

Define the set of irreducible admissible representations of , which can be realized as quotients of . Define and , likewise.

The Howe duality conjecture asserts that is the graph of a bijection between and .

The Howe duality conjecture for archimedean local fields was proved by Roger Howe. [6] For -adic local fields with odd it was proved by Jean-Loup Waldspurger. [7] Alberto Mínguez later gave a proof for dual pairs of general linear groups, that works for arbitrary residue characteristic. [8] For orthogonal-symplectic or unitary dual pairs, it was proved by Wee Teck Gan and Shuichiro Takeda. [9] The final case of quaternionic dual pairs was completed by Wee Teck Gan and Binyong Sun. [10]

See also

Related Research Articles

In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.

In mathematics, the metaplectic group Mp2n is a double cover of the symplectic group Sp2n. It can be defined over either real or p-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, and even the ring of adeles.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

In mathematics, the local Langlands conjectures, introduced by Robert Langlands, are part of the Langlands program. They describe a correspondence between the complex representations of a reductive algebraic group G over a local field F, and representations of the Langlands group of F into the L-group of G. This correspondence is not a bijection in general. The conjectures can be thought of as a generalization of local class field theory from abelian Galois groups to non-abelian Galois groups.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

Amplitude amplification is a technique in quantum computing which generalizes the idea behind Grover's search algorithm, and gives rise to a family of quantum algorithms. It was discovered by Gilles Brassard and Peter Høyer in 1997, and independently rediscovered by Lov Grover in 1998.

In mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the p-adic Lie groups. Non-examples are real Lie groups, which have the no small subgroup property.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

This is a glossary of algebraic geometry.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

<span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

In mathematics, the Gan–Gross–Prasad conjecture is a restriction problem in the representation theory of real or p-adic Lie groups posed by Gan Wee Teck, Benedict Gross, and Dipendra Prasad. The problem originated from a conjecture of Gross and Prasad for special orthogonal groups but was later generalized to include all four classical groups. In the cases considered, it is known that the multiplicity of the restrictions is at most one and the conjecture describes when the multiplicity is precisely one.

<span class="mw-page-title-main">Gan Wee Teck</span> Malaysian mathematician (born 1972)

Gan Wee Teck is a Malaysian mathematician. He is a Distinguished Professor of Mathematics at the National University of Singapore (NUS). He is known for his work on automorphic forms and representation theory in the context of the Langlands program, especially the theory of theta correspondence, the Gan–Gross–Prasad conjecture and the Langlands program for Brylinski–Deligne covering groups.

In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold to integrals from a family of varieties. In short, this means there is a relation between the number of genus algebraic curves of degree on a Calabi-Yau variety and integrals on a dual variety . These relations were original discovered by Candelas, de la Ossa, Green, and Parkes in a paper studying a generic quintic threefold in as the variety and a construction from the quintic Dwork family giving . Shortly after, Sheldon Katz wrote a summary paper outlining part of their construction and conjectures what the rigorous mathematical interpretation could be.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

References

Bibliography