This article needs additional citations for verification .(June 2024) |
In aeronautics, the thickness-to-chord ratio, sometimes simply chord ratio or thickness ratio, compares the maximum vertical thickness of a wing to its chord. It is a key measure of the performance of a wing planform when it is operating at transonic speeds.
At speeds approaching the speed of sound, the effects of Bernoulli's principle over curves on the wing and fuselage can accelerate the local flow to supersonic speeds. This creates a shock wave that produces a powerful form of drag known as wave drag, and gives rise to the concept of the sound barrier. The speed at which these shocks first form, critical mach, is a function of the amount of curvature. In order to reduce wave drag, wings should have the minimum curvature possible while still generating the required amount of lift. So, the main reason for decreasing the blade section thickness to chord ratio is to delay the compressibility effect related to higher Mach numbers, delaying the onset of a shock wave formation.
The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners. Such designs naturally have high thickness-to-chord ratios. Designing an aircraft that operates across a wide range of speeds, like a modern airliner, requires these competing needs to be carefully balanced for every aircraft design.
Swept wings are a practical outcome of the desire to have a low thickness-to-chord ratio at high speeds and a lower one at lower speeds during takeoff and landing. The sweep stretches the chord as seen by the airflow, while still keeping the wetted area of the wing to a minimum. For practical reasons, wings tend to be thickest at the root, where they meet the fuselage. For this reason, it is common for wings to taper their chord towards the tips, keeping the thickness-to-chord ratio close to constant, this also reduces induced drag at lower speeds. The crescent wing is another solution to the design to keep a relatively constant thickness-to-chord ratio.
Airliners [1] | Area (m2) | Span (m) | Aspect Ratio | Taper Ratio | Average (t/c) % | 1/4 Chord Sweep (°)" |
---|---|---|---|---|---|---|
ERJ 145 | 51.18 | 20.04 | 7.85 | 0.231 | 11.00 | 22.73 |
CRJ100 | 54.54 | 20.52 | 7.72 | 0.288 | 10.83 | 24.75 |
Avro RJ | 77.30 | 26.21 | 8.89 | 0.356 | 12.98 | 15.00 |
737 Original/Classic | 91.04 | 28.35 | 8.83 | 0.266 | 12.89 | 25.00 |
DC-9 | 92.97 | 28.47 | 8.72 | 0.206 | 11.60 | 24.00 |
Boeing 717 | 92.97 | 28.40 | 8.68 | 0.196 | 11.60 | 24.50 |
Fokker 100/70 | 93.50 | 28.08 | 8.43 | 0.235 | 10.28 | 17.45 |
MD-80/90 | 112.30 | 32.87 | 9.62 | 0.195 | 11.00 | 24.50 |
A320 | 122.40 | 33.91 | 9.39 | 0.240 | 11.92 [2] | 25.00 |
737 NG | 124.60 | 34.30 | 9.44 | 0.278 | 25.00 | |
Boeing 727 | 157.90 | 32.92 | 6.86 | 0.309 | 11.00 | 32.00 |
Boeing 757 | 185.25 | 38.05 | 7.82 | 0.243 | 25.00 | |
A310 | 219.00 | 43.89 | 8.80 | 0.283 | 11.80 | 28.00 |
A300 | 260.00 | 44.84 | 7.73 | 0.300 | 10.50 | 28.00 |
DC-8 | 271.90 | 45.23 | 7.52 | 0.181 | 11.00 | 30.00 |
Boeing 767 | 283.30 | 47.57 | 7.99 | 0.207 | 11.50 | 31.50 |
Boeing 707 | 283.40 | 44.42 | 6.96 | 0.259 | 10.00 | 35.00 |
MD-11 | 338.90 | 51.77 | 7.91 | 0.239 | 9.35 | 35.00 |
A330/A340-200/300 | 363.10 | 58.00 | 9.26 | 0.251 | 11.80 [2] | 29.70 |
DC-10 | 367.70 | 50.40 | 6.91 | 0.220 | 11.00 | 35.00 |
Boeing 777 | 427.80 | 60.90 | 8.67 | 0.149 | 31.60 | |
A340-500/600 | 437.30 | 61.20 | 8.56 | 0.220 | 31.10 | |
747 Classic | 511.00 | 59.64 | 6.96 | 0.284 | 9.40 | 37.50 |
747-400 | 525.00 | 62.30 | 7.39 | 0.275 | 9.40 | 37.50 |
MD-12 | 543.00 | 64.92 | 7.76 | 0.215 | 35.00 | |
A3XX | 817.00 | 79.80 | 7.79 | 0.213 | 30.00 |
The Whitcomb area rule, named after NACA engineer Richard Whitcomb and also called the transonic area rule, is a design procedure used to reduce an aircraft's drag at transonic speeds which occur between about Mach 0.75 and 1.2. For supersonic speeds a different procedure called the supersonic area rule, developed by NACA aerodynamicist Robert Jones, is used.
A delta wing is a wing shaped in the form of a triangle. It is named for its similarity in shape to the Greek uppercase letter delta (Δ).
A supersonic transport (SST) or a supersonic airliner is a civilian supersonic aircraft designed to transport passengers at speeds greater than the speed of sound. To date, the only SSTs to see regular service have been Concorde and the Tupolev Tu-144. The last passenger flight of the Tu-144 was in June 1978 and it was last flown in 1999 by NASA. Concorde's last commercial flight was in October 2003, with a November 26, 2003 ferry flight being its last airborne operation. Following the permanent cessation of flying by Concorde, there are no remaining SSTs in commercial service. Several companies have each proposed a supersonic business jet, which may bring supersonic transport back again.
A waverider is a hypersonic aircraft design that improves its supersonic lift-to-drag ratio by using the shock waves being generated by its own flight as a lifting surface, a phenomenon known as compression lift.
A swept wing is a wing angled either backward or occasionally forward from its root rather than perpendicular to the fuselage.
Transonic flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound, typically between Mach 0.8 and 1.2.
In aeronautics, wave drag is a component of the aerodynamic drag on aircraft wings and fuselage, propeller blade tips and projectiles moving at transonic and supersonic speeds, due to the presence of shock waves. Wave drag is independent of viscous effects, and tends to present itself as a sudden and dramatic increase in drag as the vehicle increases speed to the critical Mach number. It is the sudden and dramatic rise of wave drag that leads to the concept of a sound barrier.
The Lockheed L-2000 was Lockheed Corporation's entry in a government-funded competition to build the United States' first supersonic airliner in the 1960s. The L-2000 lost the contract to the Boeing 2707, but that competing design was ultimately canceled for political, environmental and economic reasons.
In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio.
A flap is a high-lift device used to reduce the stalling speed of an aircraft wing at a given weight. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used to reduce the take-off distance and the landing distance. Flaps also cause an increase in drag so they are retracted when not needed.
An airplane or aeroplane, informally plane, is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, propeller, or rocket engine. Airplanes come in a variety of sizes, shapes, and wing configurations. The broad spectrum of uses for airplanes includes recreation, transportation of goods and people, military, and research. Worldwide, commercial aviation transports more than four billion passengers annually on airliners and transports more than 200 billion tonne-kilometers of cargo annually, which is less than 1% of the world's cargo movement. Most airplanes are flown by a pilot on board the aircraft, but some are designed to be remotely or computer-controlled such as drones.
A supercritical aerofoil is an airfoil designed primarily to delay the onset of wave drag in the transonic speed range.
Mach tuck is an aerodynamic effect whereby the nose of an aircraft tends to pitch downward as the airflow around the wing reaches supersonic speeds. This diving tendency is also known as tuck under. The aircraft will first experience this effect at significantly below Mach 1.
An oblique wing is a variable geometry wing concept. On an aircraft so equipped, the wing is designed to rotate on center pivot, so that one tip is swept forward while the opposite tip is swept aft. By changing its sweep angle in this way, drag can be reduced at high speed without sacrificing low speed performance. This is a variation on the classic swing-wing design, intended to simplify construction and retain the center of gravity as the sweep angle is changed.
In aeronautics and aeronautical engineering, camber is the asymmetry between the two acting surfaces of an airfoil, with the top surface of a wing commonly being more convex. An airfoil that is not cambered is called a symmetric airfoil. The benefits of cambering were discovered and first utilized by George Cayley in the early 19th century.
Wing-shape optimization is a software implementation of shape optimization primarily used for aircraft design. This allows for engineers to produce more efficient and cheaper aircraft designs.
In naval architecture and aerospace engineering, the fineness ratio is the ratio of the length of a body to its maximum width. Shapes that are short and wide have a low fineness ratio, those that are long and narrow have high fineness ratios. Aircraft that spend time at supersonic speeds, e.g. the Concorde, generally have high fineness ratios.
A subsonic aircraft is an aircraft with a maximum speed less than the speed of sound. The term technically describes an aircraft that flies below its critical Mach number, typically around Mach 0.8. All current civil aircraft, including airliners, helicopters, future passenger drones, personal air vehicles and airships, as well as many military types, are subsonic.
The wing configuration of a fixed-wing aircraft is its arrangement of lifting and related surfaces.
The crescent wing is a fixed-wing aircraft configuration in which a swept wing has a greater sweep angle on the inboard section than the outboard, giving the wing a crescent shape.