Thurston's 24 questions are a set of mathematical problems in differential geometry posed by American mathematician William Thurston in his influential 1982 paper Three-dimensional manifolds, Kleinian groups and hyperbolic geometry published in the Bulletin of the American Mathematical Society . [1] These questions significantly influenced the development of geometric topology and related fields over the following decades.
The questions appeared following Thurston's announcement of the geometrization conjecture, which proposed that all compact 3-manifolds could be decomposed into geometric pieces. [1] This conjecture, later proven by Grigori Perelman in 2003, represented a complete classification of 3-manifolds and included the famous Poincaré conjecture as a special case. [2]
By 2012, 22 of Thurston's 24 questions had been resolved. [2]
Thurston's 24 questions are: [1]
Problem | Brief explanation | Status | Year solved |
---|---|---|---|
1st | The geometrization conjecture for 3-manifolds (a generalization of the Poincaré conjecture) | Solved by Grigori Perelman using Ricci flow with surgery | 2003 |
2nd | Classification of finite group actions on geometric 3-manifolds | Solved by Meeks, Scott, Dinkelbach, and Leeb | 2009 |
3rd | The geometrization conjecture for 3-orbifolds | Solved by Boileau, Leeb, and Porti | 2005 |
4th | Global theory of hyperbolic Dehn surgery | Resolved through work of Agol, Lackenby, and others | 2000–2013 |
5th | Are all Kleinian groups geometrically tame? | Solved through work of Bonahon and Canary | 1986–1993 |
6th | Density of geometrically finite groups | Solved by Namazi-Souto and Ohshika | 2012 |
7th | Theory of Schottky groups and their limits | Resolved through work of Brock, Canary, and Minsky | 2012 |
8th | Analysis of limits of quasi-Fuchsian groups with accidental parabolics | Solved by Anderson and Canary | 2000 |
9th | Are all Kleinian groups topologically tame? | Solved independently by Agol and by Calegari-Gabai | 2004 |
10th | The Ahlfors measure zero problem | Solved as consequence of geometric tameness | 2004 |
11th | Ending lamination conjecture | Solved by Brock, Canary, and Minsky | 2012 |
12th | Describe quasi-isometry type of Kleinian groups | Solved with Ending lamination theorem | 2012 |
13th | Hausdorff dimension and geometric finiteness | Solved by Bishop and Jones | 1997 |
14th | Existence of Cannon-Thurston maps | Solved by Mahan Mj | 2009-2012 |
15th | LERF property for Kleinian groups | Solved by Ian Agol, building on work of Wise | 2013 |
16th | Virtually Haken conjecture | Solved by Ian Agol | 2012 |
17th | Virtual positive first Betti number | Solved by Ian Agol | 2013 |
18th | Virtually fibered conjecture | Solved by Ian Agol | 2013 |
19th | Properties of arithmetic subgroups | Unresolved | — |
20th | Computer programs and tabulations | Addressed through development of SnapPea and other software | 1990s–2000s |
21st | Computer programs and tabulations | Addressed through development of SnapPea and other software | 1990s–2000s |
22nd | Computer programs and tabulations | Addressed through development of SnapPea and other software | 1990s–2000s |
23rd | Rational independence of hyperbolic volumes | Unresolved | — |
24th | Prevalence of hyperbolic structures in manifolds with given Heegaard genus | Solved by Namazi and Souto | 2009 |
In the mathematical field of geometric topology, the Poincaré conjecture is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.
William Paul Thurston was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds.
In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries.
Grigori Yakovlevich Perelman is a Russian mathematician and geometer who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 2005, Perelman resigned from his research post in Steklov Institute of Mathematics and in 2006 stated that he had quit professional mathematics, owing to feeling disappointed over the ethical standards in the field. He lives in seclusion in Saint Petersburg and has declined requests for interviews since 2006.
In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.
Richard Streit Hamilton was an American mathematician who served as the Davies Professor of Mathematics at Columbia University.
In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries.
In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces.
In mathematics, a surface bundle over the circle is a fiber bundle with base space a circle, and with fiber space a surface. Therefore the total space has dimension 2 + 1 = 3. In general, fiber bundles over the circle are a special case of mapping tori.
In the mathematical subfield of 3-manifolds, the virtually fibered conjecture, formulated by American mathematician William Thurston, states that every closed, irreducible, atoroidal 3-manifold with infinite fundamental group has a finite cover which is a surface bundle over the circle.
In mathematics, hyperbolic Dehn surgery is an operation by which one can obtain further hyperbolic 3-manifolds from a given cusped hyperbolic 3-manifold. Hyperbolic Dehn surgery exists only in dimension three and is one which distinguishes hyperbolic geometry in three dimensions from other dimensions.
In topology, an area of mathematics, the virtually Haken conjecture states that every compact, orientable, irreducible three-dimensional manifold with infinite fundamental group is virtually Haken. That is, it has a finite cover that is a Haken manifold.
John Willard Morgan is an American mathematician known for his contributions to topology and geometry. He is a Professor Emeritus at Columbia University and a member of the Simons Center for Geometry and Physics at Stony Brook University.
In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture.
James W. Cannon is an American mathematician working in the areas of low-dimensional topology and geometric group theory. He was an Orson Pratt Professor of Mathematics at Brigham Young University.
In hyperbolic geometry, the ending lamination theorem, originally conjectured by William Thurston as the eleventh problem out of his twenty-four questions, states that hyperbolic 3-manifolds with finitely generated fundamental groups are determined by their topology together with certain "end invariants", which are geodesic laminations on some surfaces in the boundary of the manifold.
Troels Jørgensen is a Danish mathematician at Columbia University working on hyperbolic geometry and complex analysis, who proved Jørgensen's inequality. He wrote his thesis in 1970 at the University of Copenhagen under the joint supervision of Werner Fenchel and Bent Fuglede.
Yair Nathan Minsky is an Israeli-American mathematician whose research concerns three-dimensional topology, differential geometry, group theory and holomorphic dynamics. He is a professor at Yale University. He is known for having proved Thurston's ending lamination conjecture and as a student of curve complex geometry.
Robert F. Riley was an American mathematician. He is known for his work in low-dimensional topology using computational tools and hyperbolic geometry, being one of the inspirations for William Thurston's later breakthroughs in 3-dimensional topology.