Tiffany A. Shaw | |
---|---|
Born | Brampton, Ontario, Canada |
Alma mater | University of British Columbia, University of Toronto (M.S. and Ph.D) |
Awards | NSF CAREER Award, American Geophysical Union James B. Macelwane Medal |
Scientific career | |
Fields |
|
Thesis | Energy and Momentum Consistency in Subgrid-Scale Parameterization for Climate Models |
Doctoral advisor | Ted Shepherd |
Tiffany Shaw is a geophysical scientist from Canada. She is currently an associate professor at the University of Chicago. She is known for her extensive contributions to the geophysical and atmospheric sciences.
Tiffany Shaw is a geophysical scientist from Brampton, Canada. Her interest in science and math stemmed from an influential math teacher she had in high school. Her specific interest in geophysical and atmospheric sciences began while she was studying to become a pilot.
She received her B.S. in Atmospheric Science and Math at the University of British Columbia in 2004. [1] In 2005, she completed her M.S. in physics from the University of Toronto. In 2009, Shaw received her PhD in physics from the University of Toronto. There, she worked with her mentor and advisor, Ted Shepherd on her doctoral thesis: Energy and Momentum Consistency in Subgrid-Scale Parameterization for Climate Models. [1]
From 2009 to 2010, Shaw worked as a Research Assistant Professor at the Center for Atmospheric Ocean Science at the Courant Institute at New York University. Shaw then worked as a Natural Sciences and Engineering Research Council of Canada Post Doctoral Fellow at the Lamont–Doherty Earth Observatory & Department of Applied Physics and Applied Mathematics at Columbia University from 2010 to 2011. From 2011 to 2015, Shaw worked as an Assistant Professor of Earth and Environmental Sciences & Applied Physics and Applied Mathematics at Columbia University. [1]
In 2015, Shaw began her work at the University of Chicago. From 2015 to 2017, Shaw was an assistant professor of the Geophysical Sciences, and became an Associate Professor of the Geophysical Sciences in 2017. She currently holds this position. [1]
Shaw is known for her research in the Geophysical Sciences and Atmospheric Sciences, and most of her research pertains to how climate change effect these sciences.
In 2004, Shaw and her advisor, Ted Shepherd, wrote the paper The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere, which asserts that the friction between atmospheric layers needs to be represented in calculations about the effects of climate change. [2] In 2010, Shaw wrote a paper entitled Downward wave coupling between stratosphere and troposphere: The important of meridional wave guiding and comparison with zonal-mean coupling. [3] In 2017, Shaw worked on the paper Moist static energy framework for zonal-mean storm-track intensity. This paper showed that seasonal strength cannot be explained solely by seasonal changes in solar radiation, and that surface heat fluxes account for the muted seasonality in the Southern Hemisphere and large seasonality in the Northern Hemisphere, and in response to climate change surface heat fluxes over ocean versus land exert opposing influences on the strength of storm tracks. [4] Shaw wrote Circulation response to warming shaped by radiative changes of clouds and water vapor (2015), which outlines how the atmosphere will manifest global climate change thru clouds and water vapor. [5] Another well known paper by Shaw is Storm track processes and the opposing influences of climate change (2016), which is about how changing temperature gradients are altering storm track processes. [6]
In 2013, Shaw received the NSF CAREER award for her work as a teacher, researcher, and scholar. In her physics research, Shaw focused on the variability of transportation of moisture in the summertime, and its effect on monsoons and subtropical anticyclones. [7] In 2015, Shaw received the Alfred P. Sloan Research Fellowship [8] in Physics. In 2017, Shaw won the American Geophysical Union James B. Macelwane Medal for her important contributions to the geophysical sciences. [9]
The troposphere is the lowest layer of the atmosphere of Earth. It contains 75% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.
Keith Peter Shine FRS is the Regius Professor of Meteorology and Climate Science at the University of Reading. He is the first holder of this post, which was awarded to the university by Queen Elizabeth II to mark her Diamond Jubilee.
The tropopause is the atmospheric boundary that demarcates the troposphere from the stratosphere, which are the lowest two of the five layers of the atmosphere of Earth. The tropopause is a thermodynamic gradient-stratification layer that marks the end of the troposphere, and is approximately 17 kilometres (11 mi) above the equatorial regions, and approximately 9 kilometres (5.6 mi) above the polar regions.
The quasi-biennial oscillation (QBO) is a quasiperiodic oscillation of the equatorial zonal wind between easterlies and westerlies in the tropical stratosphere with a mean period of 28 to 29 months. The alternating wind regimes develop at the top of the lower stratosphere and propagate downwards at about 1 km (0.6 mi) per month until they are dissipated at the tropopause. Downward motion of the easterlies is usually more irregular than that of the westerlies. The amplitude of the easterly phase is about twice as strong as that of the westerly phase. At the top of the vertical QBO domain, easterlies dominate, while at the bottom, westerlies are more likely to be found. At the 30 mb level, with regards to monthly mean zonal winds, the strongest recorded easterly was 29.55 m/s in November 2005, while the strongest recorded westerly was only 15.62 m/s in June 1995.
A sudden stratospheric warming (SSW) is an event in which polar stratospheric temperatures rise by several tens of kelvins over the course of a few days. The warming is preceded by a slowing then reversal of the westerly winds in the stratospheric polar vortex. SSWs occur about six times per decade in the northern hemisphere, and about once every 20-30 years in the southern hemisphere. Only two southern SSWs have been observed.
Richard Siegmund Lindzen is an American atmospheric physicist known for his work in the dynamics of the middle atmosphere, atmospheric tides, and ozone photochemistry. He is the author of more than 200 scientific papers. From 1972 to 1982, he served as the Gordon McKay Professor of Dynamic Meteorology at Harvard University. In 1983, he was appointed as the Alfred P. Sloan Professor of Meteorology at the Massachusetts Institute of Technology, where he would remain until his retirement in 2013. Lindzen has disputed the scientific consensus on climate change and criticizes what he has called "climate alarmism".
Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby in the Earth's atmosphere in 1939. They are observed in the atmospheres and oceans of Earth and other planets, owing to the rotation of Earth or of the planet involved. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream. Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean.
Radiative forcing is the change in energy flux in the atmosphere caused by natural or anthropogenic factors of climate change as measured in watts per meter squared. It is a scientific concept used to quantify and compare the external drivers of change to Earth's energy balance. These external drivers are distinguished from climate feedbacks and internal variability, which also influence the direction and magnitude of imbalance.
A circumpolar vortex, or simply polar vortex, is a large region of cold, rotating air; polar vortices encircle both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.
The Madden–Julian oscillation (MJO) is the largest element of the intraseasonal variability in the tropical atmosphere. It was discovered in 1971 by Roland Madden and Paul Julian of the American National Center for Atmospheric Research (NCAR). It is a large-scale coupling between atmospheric circulation and tropical deep atmospheric convection. Unlike a standing pattern like the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation is a traveling pattern that propagates eastward, at approximately 4 to 8 m/s, through the atmosphere above the warm parts of the Indian and Pacific oceans. This overall circulation pattern manifests itself most clearly as anomalous rainfall.
The Hadley cell, also known as the Hadley circulation, is a global-scale tropical atmospheric circulation that features air rising near the equator, flowing poleward near the tropopause at a height of 12–15 km (7.5–9.3 mi) above the Earth's surface, cooling and descending in the subtropics at around 25 degrees latitude, and then returning equatorward near the surface. It is a thermally direct circulation within the troposphere that emerges due to differences in insolation and heating between the tropics and the subtropics. On a yearly average, the circulation is characterized by a circulation cell on each side of the equator. The Southern Hemisphere Hadley cell is slightly stronger on average than its northern counterpart, extending slightly beyond the equator into the Northern Hemisphere. During the summer and winter months, the Hadley circulation is dominated by a single, cross-equatorial cell with air rising in the summer hemisphere and sinking in the winter hemisphere. Analogous circulations may occur in extraterrestrial atmospheres, such as on Venus and Mars.
In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted by the wind on the surface of large bodies of water – such as oceans, seas, estuaries and lakes. When wind is blowing over a water surface, the wind applies a wind force on the water surface. The wind stress is the component of this wind force that is parallel to the surface per unit area. Also, the wind stress can be described as the flux of horizontal momentum applied by the wind on the water surface. The wind stress causes a deformation of the water body whereby wind waves are generated. Also, the wind stress drives ocean currents and is therefore an important driver of the large-scale ocean circulation. The wind stress is affected by the wind speed, the shape of the wind waves and the atmospheric stratification. It is one of the components of the air–sea interaction, with others being the atmospheric pressure on the water surface, as well as the exchange of energy and mass between the water and the atmosphere.
Teleconnection in atmospheric science refers to climate anomalies being related to each other at large distances. The most emblematic teleconnection is that linking sea-level pressure at Tahiti and Darwin, Australia, which defines the Southern Oscillation. Another well-known teleconnection links the sea-level pressure over Iceland with the one over the Azores, traditionally defining the North Atlantic Oscillation (NAO).
The microwave sounding unit (MSU) was the predecessor to the Advanced Microwave Sounding Unit (AMSU).
Joanna Dorothy Haigh is a British physicist and academic. Before her retirement in 2019 she was Professor of Atmospheric Physics at Imperial College London, and co-director of the Grantham Institute – Climate Change and Environment. She served as head of the department of physics at Imperial College London. She is a Fellow of the Royal Society (FRS), and a served as president of the Royal Meteorological Society.
The length of the day (LOD), which has increased over the long term of Earth's history due to tidal effects, is also subject to fluctuations on a shorter scale of time. Exact measurements of time by atomic clocks and satellite laser ranging have revealed that the LOD is subject to a number of different changes. These subtle variations have periods that range from a few weeks to a few years. They are attributed to interactions between the dynamic atmosphere and Earth itself. The International Earth Rotation and Reference Systems Service monitors the changes.
Theodore Gordon Shepherd is the Grantham Professor of Climate Science at the University of Reading.
Pacific Meridional Mode (PMM) is a climate mode in the North Pacific. In its positive state, it is characterized by the coupling of weaker trade winds in the northeast Pacific Ocean between Hawaii and Baja California with decreased evaporation over the ocean, thus increasing sea surface temperatures (SST); and the reverse during its negative state. This coupling develops during the winter months and spreads southwestward towards the equator and the central and western Pacific during spring, until it reaches the Intertropical Convergence Zone (ITCZ), which tends to shift north in response to a positive PMM.
M. Joan Alexander is an atmospheric scientist known for her research on gravity waves and their role in atmospheric circulation.
Eddy saturation and eddy compensation are phenomena found in the Southern Ocean. Both are limiting processes where eddy activity increases due to the momentum of strong westerlies, and hence do not enhance their respective mean currents. Where eddy saturations impacts the Antarctic Circumpolar Current (ACC), eddy compensation influences the associated Meridional Overturning Circulation (MOC).