This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)

Timedomain thermoreflectance is a method by which the thermal properties of a material can be measured, most importantly thermal conductivity. This method can be applied most notably to thin film materials (up to hundreds of nanometers thick), which have properties that vary greatly when compared to the same materials in bulk. The idea behind this technique is that once a material is heated up, the change in the reflectance of the surface can be utilized to derive the thermal properties. The reflectivity is measured with respect to time, and the data received can be matched to a model with coefficients that correspond to thermal properties.
The technique of this method is based on the monitoring of acoustic waves that are generated with a pulsed laser. Localized heating of a material will create a localized temperature increase, which induces thermal stress. This stress build in a localized region causes an acoustic strain pulse. At an interface, the pulse will be subjected to a transmittance/reflectance state, and the characteristics of the interface may be monitored with the reflected waves. A probe laser will detect the effects of the reflecting acoustic waves by sensing the piezooptic effect.
The amount of strain is related to the optical laser pulse as follows. Take the localized temperature increase due to the laser,
where R is the sample reflectivity, Q is the optical pulse energy, C is the specific heat (per unit volume), A is the optical spot area, ζ is the optical absorption length, and z is the distance into the sample (Ref A). This temperature increase results in a strain that can be estimated by multiplying it with the linear coefficient of thermal expansion of the film. Usually, a typical magnitude value of the acoustic pulse will be small, and for long propagation nonlinear effects could become important. But propagation of such short duration pulses will suffer acoustic attenuation if the temperature is not very low (Ref B). Thus, this method is most efficient with the utilization of surface acoustic waves, and studies on investigation of this method toward lateral structures are being conducted.
To sense the piezooptic effect of the reflected waves, fast monitoring is required due to the travel time of the acoustic wave and heat flow. Acoustic waves travel a few nanometers in a picosecond, where heat flows about a hundred nanometers in a second.^{ [1] }^{ [2] } Thus, lasers such as titanium sapphire (Ti:Al2O3) laser, with pulse width of ~200 fs, are used to monitor the characteristics of the interface. Other type of lasers include Yb:fiber, Yb:tungstate, Er:fiber, Nd:glass. Secondharmonic generation may be utilized to achieve frequency of double or higher.
The output of the laser is split into pump and probe beams by a halfwave plate followed by a polarizing beam splitter leading to a crosspolarized pump and probe. The pump beam is modulated on the order of a few megahertz by an acoustooptic or electrooptic modulator and focused onto the sample with a lens. The probe is directed into an optical delay line. The probe beam is then focused with a lens onto the same spot on the sample as the pulse. Both pump and probe have a spot size on the order of 10–50 μm. The reflected probe light is input to a high bandwidth photodetector. The output is fed into a lockin amplifier whose reference signal has the same frequency used to modulate the pump. The voltage output from the lockin will be proportional to ΔR. Recording this signal as the optical delay line is changed provides a measurement of ΔR as a function of optical probepulse time delay.^{ [3] }
The surface temperature of a single layer
The frequency domain solution for a semiinfinite solid which is heated by a point source with angular frequency can be expressed by the following equation.^{ [4] }
where (1)
(Λ: thermal conductivity of the solid, D: thermal diffusivity of the solid, r: radial coordinate)
In a typical timedomain thermoreflectance experiment, the coaligned laser beams have cylindrical symmetry, therefore the Hankel Transform can be used to simplify the computation of the convolution of equation (1) with the distributions of the laser intensities.
(The Hankel transform is an integral transform equivalent to a twodimensional Fourier transform with a radially symmetric integral kernel)
Here g(r) is radially symmetric and by the definition of Hankel transform using Eq. (1),
(2)
Since the pump and probe beams used here have Gaussian distribution, the radius of the pump and probe beam are and respectively. The surface is heated by the pump laser beam with the intensity , i.e.
(3)
where is the amplitude of the heat absorbed by the sample at frequency . Then the Hankel transform of is
. (4)
Then the distributions of temperature oscillations at the surface is the inverse Hankel transforms of the product and , i.e.
(5)
The surface temperatures are measured due to the change in the reflectivity with the temperature , i.e. , while this change is measured by the changes in the reflected intensity of a probe laser beam. The probe laser beam measures a weighted average of the temperature , i.e.
(6a)
This last integral (6a) can be simplified to an integral over :
(6b)
The surface temperature of a layered structure
In the similar way, frequency domain solution for the surface temperature of a layered structure can be acquired. Instead of Eq. (2), Eq. (7) will be used for a layered structure.
(7)
(Λn: thermal conductivity of nth layer, Dn: thermal diffusivity of nth layer, Ln: thickness of nth layer) Using Eqs. (6) and (7), we can calculate the changes of temperature of a layered structure.
Modeling of data acquired in timedomain thermoreflectance
The acquired data from timedomain thermoreflectance experiments are required to be compared with the model.
(8)
(9)
(10)
(Q: quality factor of the resonant circuit) This calculated Vf/V0 would be compared with the measured one.
Through this process of timedomain thermoreflectance, the thermal properties of many materials can be obtained. Common test setups include having multiple metal blocks connected together in a diffusion multiple, where once subjected to high temperatures various compounds can be created as a result of the diffusion of two adjacent metal blocks. An example would be a NiCrPdPtRhRu diffusion multiple which would have diffusion zones of NiCr, NiPd, NiPt and so on. In this way, many different materials can be tested at the same time.^{ [5] } Lowest thermal conductivity for a thin film of solid, fully dense material (i.e. not porous) was also recently reported with measurements using this method.^{ [6] }
Once this test sample is obtained, timedomain thermoreflectance measurements can take place, with laser pulses of very short duration for both the pump and the probe lasers (<1 ps). The thermoreflected signal is then measured by a photodiode which is connected to a RF lockin amplifier. The signals that come out of the amplifier consist of an in phase and out of phase component, and the ratio of these allow thermal conductivity data to be measured for a specific delay time.
The data received from this process can then be compared to a thermal model, and the thermal conductivity and thermal conductance can then be derived. It is found that these two parameters can be derived independently based on the delay times, with short delay times (0.1  .5 ns) resulting in the thermal conductivity and longer delay times (> 2ns) resulting in the thermal conductance.
There is much room for error involved due to phase errors in the RF amplifier in addition to noise from the lasers. Typically, however, accuracy can be found to be within 8%.
The process by which heat is transferred from the hotter end to the colder end of object is known as conduction.
In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.
In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".
The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, theta functions are special functions of several complex variables. They are important in many areas, including the theories of Abelian varieties and moduli spaces, and of quadratic forms. They have also been applied to soliton theory. When generalized to a Grassmann algebra, they also appear in quantum field theory.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
Critical radius is the minimum particle size from which an aggregate is thermodynamically stable. In other words, it is the lowest radius formed by atoms or molecules clustering together before a new phase inclusion is viable and begins to grow. Formation of such stable nuclei is called nucleation.
The spherical model is a model of ferromagnetism similar to the Ising model, which was solved in 1952 by T. H. Berlin and M. Kac. It has the remarkable property that for linear dimension d greater than four, the critical exponents that govern the behaviour of the system near the critical point are independent of d and the geometry of the system. It is one of the few models of ferromagnetism that can be solved exactly in the presence of an external field.
In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.
Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces and frictional stresses acting tangentially between the surfaces. This page focuses mainly on the normal direction, i.e. on frictionless contact mechanics. Frictional contact mechanics is discussed separately. Normal stresses are caused by applied forces and by the adhesion present on surfaces in close contact even if they are clean and dry.
In physics, the Toda oscillator is a special kind of nonlinear oscillator. It represents a chain of particles with exponential potential interaction between neighbors. These concepts are named after Morikazu Toda. The Toda oscillator is used as a simple model to understand the phenomenon of selfpulsation, which is a quasiperiodic pulsation of the output intensity of a solidstate laser in the transient regime.
In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complexvalued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are Eigenforms of the hyperbolic Laplace Operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to the modular forms the Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.
As the devices continue to shrink further into the sub100 nm range following the trend predicted by Moore’s law, the topic of thermal properties and transport in such nanoscale devices becomes increasingly important. Display of great potential by nanostructures for thermoelectric applications also motivates the studies of thermal transport in such devices. These fields, however, generate two contradictory demands: high thermal conductivity to deal with heating issues in sub100 nm devices and low thermal conductivity for thermoelectric applications. These issues can be addressed with phonon engineering, once nanoscale thermal behaviors have been studied and understood.
Phonons can scatter through several mechanisms as they travel through the material. These scattering mechanisms are: Umklapp phononphonon scattering, phononimpurity scattering, phononelectron scattering, and phononboundary scattering. Each scattering mechanism can be characterised by a relaxation rate 1/ which is the inverse of the corresponding relaxation time.
In experimental atomic physics, saturated absorption spectroscopy or Dopplerfree spectroscopy is a setup that enables the precise determination of the transition frequency of an atom between its ground state and an optically excited state. The accuracy to which these frequencies can be determined is, ideally, limited only by the width of the excited state, which is the inverse of the lifetime of this state. However, the samples of atomic gas that are used for that purpose are generally at room temperature, where the measured frequency distribution is highly broadened due to the Doppler effect. Saturated absorption spectroscopy allows precise spectroscopy of the atomic levels without having to cool the sample down to temperatures at which the Doppler broadening is no longer relevant. It is also used to lock the frequency of a laser to the precise wavelength of an atomic transition in atomic physics experiments.
In statistics and physics, multicanonical ensemble is a Markov chain Monte Carlo sampling technique that uses the Metropolis–Hastings algorithm to compute integrals where the integrand has a rough landscape with multiple local minima. It samples states according to the inverse of the density of states, which has to be known a priori or be computed using other techniques like the Wang and Landau algorithm. Multicanonical sampling is an important technique for spin systems like the Ising model or spin glasses.
Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is energy stored in temperaturedependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.
In physics, the Maxwell–Jüttner distribution is the distribution of speeds of particles in a hypothetical gas of relativistic particles. Similar to Maxwell's distribution, the Maxwell–Jüttner distribution considers a classical ideal gas where the particles are dilute and do not significantly interact with each other. The distinction from Maxwell's case is that effects of special relativity are taken into account. In the limit of low temperatures much less than , this distribution becomes identical to the Maxwell–Boltzmann distribution.