There are a number of possible ways to measure thermal conductivity, each of them suitable for a limited range of materials, depending on the thermal properties and the medium temperature. Three classes of methods exist to measure the thermal conductivity of a sample: steady-state, time-domain, and frequency-domain methods.
In general, steady-state techniques perform a measurement when the temperature of the material measured does not change with time. This makes the signal analysis straightforward (steady state implies constant signals). The disadvantage is that a well-engineered experimental setup is usually needed.
Steady-state methods, in general, work by applying a known heat flux, , to a sample with a surface area, , and thickness, ; once the sample's steady-state temperature is reached, the difference in temperature, , across the thickness of the sample is measured. After assuming one-dimensional heat flow and an isotropic medium, Fourier's law is then used to calculate the measured thermal conductivity, :
Major sources of error in steady-state measurements include radiative and convective heat losses in the setup, as well as errors in the thickness of the sample propagating to the thermal conductivity.
In geology and geophysics, the most common method for consolidated rock samples is the divided bar. There are various modifications to these devices depending on the temperatures and pressures needed as well as sample sizes. A sample of unknown conductivity is placed between two samples of known conductivity (usually brass plates). The setup is usually vertical with the hot brass plate at the top, the sample in between then the cold brass plate at the bottom. Heat is supplied at the top and made to move downwards to stop any convection within the sample. Measurements are taken after the sample has reached to the steady state (with zero heat gradient or constant heat over entire sample), this usually takes about 30 minutes and over.
For good conductors of heat, Searle's bar method can be used. [1] For poor conductors of heat, Lee's disc method can be used. [2]
The transient techniques perform a measurement during the process of heating up. The advantage is that measurements can be made relatively quickly. Transient methods are usually carried out by needle probes.
Non-steady-state methods to measure the thermal conductivity do not require the signal to obtain a constant value. Instead, the signal is studied as a function of time. The advantage of these methods is that they can in general be performed more quickly, since there is no need to wait for a steady-state situation. The disadvantage is that the mathematical analysis of the data is generally more difficult.
The transient hot wire method (THW) is a very popular, accurate and precise technique to measure the thermal conductivity of gases, liquids, [3] solids, [4] nanofluids [5] and refrigerants [6] in a wide temperature and pressure range. The technique is based on recording the transient temperature rise of a thin vertical metal wire with infinite length when a step voltage is applied to it. The wire is immersed in a fluid and can act both as an electrical heating element and a resistance thermometer. The transient hot wire method has advantage over the other thermal conductivity method since there is a fully developed theory and there is no calibration or single-point calibration. Furthermore, because of the very small measuring time (1 s) there is no convection present in the measurements and only the thermal conductivity of the fluid is measured with very high accuracy.
Most of the THW sensors used in academia consist of two identical very thin wires with only difference in the length. [3] Sensors using a single wire, [7] [8] are used both in academia and industry with the advantage over the two-wire sensors the ease of handling of the sensor and change of the wire.
An ASTM standard is published for the measurements of engine coolants using a single-transient hot wire method. [9]
Transient Plane Source Method, utilizing a plane sensor and a special mathematical model describing the heat conductivity, combined with electronics, enables the method to be used to measure Thermal Transport Properties. It covers a thermal conductivity range of at least 0.01-500 W/m/K (in accordance with ISO 22007-2) and can be used for measuring various kinds of materials, such as solids, liquid, paste and thin films etc. In 2008 it was approved as an ISO-standard for measuring thermal transport properties of polymers (November 2008). This TPS standard also covers the use of this method to test both isotropic and anisotropic materials.
The Transient Plane Source technique typically employs two samples halves, in-between which the sensor is sandwiched. Normally the samples should be homogeneous, but extended use of transient plane source testing of heterogeneous material is possible, with proper selection of sensor size to maximize sample penetration. This method can also be used in a single-sided configuration, with the introduction of a known insulation material used as sensor support.
The flat sensor consists of a continuous double spiral of electrically conducting nickel (Ni) metal, etched out of a thin foil. The nickel spiral is situated between two layers of thin polyimide film Kapton. The thin Kapton films provides electrical insulation and mechanical stability to the sensor. The sensor is placed between two halves of the sample to be measured. During the measurement a constant electrical effect passes through the conducting spiral, increasing the sensor temperature. The heat generated dissipates into the sample on both sides of the sensor, at a rate depending on the thermal transport properties of the material. By recording temperature vs. time response in the sensor, the thermal conductivity, thermal diffusivity and specific heat capacity of the material can be calculated. For highly conducting materials, very large samples are needed (some litres of volume).
A variation of the above method is the Modified Transient Plane Source Method (MTPS) developed by Dr. Nancy Mathis. The device uses a one-sided, interfacial, heat reflectance sensor that applies a momentary, constant heat source to the sample. The difference between this method and traditional transient plane source technique described above is that the heating element is supported on a backing, which provides mechanical support, electrical insulation and thermal insulation. This modification provides a one-sided interfacial measurement in offering maximum flexibility in testing liquids, powders, pastes and solids.
The physical model behind this method is the infinite line source with constant power per unit length. The temperature profile at a distance at time is as follows
where
When performing an experiment, one measures the temperature at a point at fixed distance, and follows that temperature in time. For large times, the exponential integral can be approximated by making use of the following relation
where
This leads to the following expression
Note that the first two terms in the brackets on the RHS are constants. Thus if the probe temperature is plotted versus the natural logarithm of time, the thermal conductivity can be determined from the slope given knowledge of Q. Typically this means ignoring the first 60 to 120 seconds of data and measuring for 600 to 1200 seconds. Typically, this method is used for gases and liquids whose thermal conductivities are between 0.1 and 50 W/(mK). If the thermal conductivities are too high, the diagram often does not show a linearity, so that no evaluation is possible. [10]
A variation on the Transient Line Source method is used for measuring the thermal conductivity of a large mass of the earth for Geothermal Heat Pump (GHP/GSHP) system design. This is generally called Ground Thermal Response Testing (TRT) by the GHP industry. [11] [12] [13] Understanding the ground conductivity and thermal capacity is essential to proper GHP design, and using TRT to measure these properties was first presented in 1983 (Mogensen). The now commonly used procedure, introduced by Eklöf and Gehlin in 1996 and now approved by ASHRAE involves inserting a pipe loop deep into the ground (in a well bore, filling the anulus of the bore with a grout substance of known thermal properties, heating the fluid in the pipe loop, and measuring the temperature drop in the loop from the inlet and return pipes in the bore. The ground thermal conductivity is estimated using the line source approximation method—plotting a straight line on the log of the thermal response measured. A very stable thermal source and pumping circuit are required for this procedure.
More advanced Ground TRT methods are currently under development. The DOE is now validating a new Advanced Thermal Conductivity test said to require half the time as the existing approach, while also eliminating the requirement for a stable thermal source. [14] This new technique is based on multi-dimensional model-based TRT data analysis.
The laser flash method is used to measure thermal diffusivity of a thin disc in the thickness direction. This method is based upon the measurement of the temperature rise at the rear face of the thin-disc specimen produced by a short energy pulse on the front face. With a reference sample specific heat can be achieved and with known density the thermal conductivity results as follows
where
It is suitable for a multiplicity of different materials over a broad temperature range (−120 °C to 2800 °C). [15]
Time-domain thermoreflectance is a method by which the thermal properties of a material can be measured, most importantly thermal conductivity. This method can be applied most notably to thin film materials, which have properties that vary greatly when compared to the same materials in bulk. The idea behind this technique is that once a material is heated up, the change in the reflectance of the surface can be utilized to derive the thermal properties. The change in reflectivity is measured with respect to time, and the data received can be matched to a model which contain coefficients that correspond to thermal properties.
One popular technique for electro-thermal characterization of materials is the 3ω-method, in which a thin metal structure (generally a wire or a film) is deposited on the sample to function as a resistive heater and a resistance temperature detector (RTD). The heater is driven with AC current at frequency ω, which induces periodic joule heating at frequency 2ω due to the oscillation of the AC signal during a single period. There will be some delay between the heating of the sample and the temperature response which is dependent upon the thermal properties of the sensor/sample. This temperature response is measured by logging the amplitude and phase delay of the AC voltage signal from the heater across a range of frequencies (generally accomplished using a lock-in-amplifier). Note, the phase delay of the signal is the lag between the heating signal and the temperature response. The measured voltage will contain both the fundamental and third harmonic components (ω and 3ω respectively), because the Joule heating of the metal structure induces oscillations in its resistance with frequency 2ω due to the temperature coefficient of resistance (TCR) of the metal heater/sensor as stated in the following equation:
where C0 is constant. Thermal conductivity is determined by the linear slope of ΔT vs. log(ω) curve. The main advantages of the 3ω-method are minimization of radiation effects and easier acquisition of the temperature dependence of the thermal conductivity than in the steady-state techniques. Although some expertise in thin film patterning and microlithography is required, this technique is considered as the best pseudo-contact method available. [16] (ch23)
The transient hot wire method can be combined with the 3ω-method to accurately measure the thermal conductivity of solid and molten compounds from room temperature up to 800 °C. In high temperature liquids, errors from convection and radiation make steady-state and time-domain thermal conductivity measurements vary widely; [17] this is evident in the previous measurements for molten nitrates. [18] By operating in the frequency-domain, the thermal conductivity of the liquid can be measured using a 25 μm diameter hot-wire while rejecting the influence of ambient temperature fluctuations, minimizing error from radiation, and minimizing errors from convection by keeping the probed volume below 1 μL. [19]
The freestanding sensor-based 3ω technique [20] [21] is proposed and developed as a candidate for the conventional 3ω method for thermophysical properties measurement. The method covers the determination of solids, powders and fluids from cryogenic temperatures to around 400 K. [22] For solid samples, the method is applicable to both bulks and tens of micrometers thick wafers/membranes, [23] dense or porous surfaces. [24] The thermal conductivity and thermal effusivity can be measured using selected sensors, respectively. Two basic forms are now available: the linear source freestanding sensor and the planar source freestanding sensor. The range of thermophysical properties can be covered by different forms of the technique, with the exception that the recommended thermal conductivity range where the highest precision can be attained is 0.01 to 150 W/m•K for the linear source freestanding sensor and 500 to 8000 J/m2•K•s0.5 for the planar source freestanding sensor.
A thermal conductance tester, one of the instruments of gemology, determines if gems are genuine diamonds using diamond's uniquely high thermal conductivity.
For an example, see Measuring Instrument of Heat Conductivity of ITP-MG4 "Zond" (Russia). [25]
A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the Seebeck effect, and this voltage can be interpreted to measure temperature. Thermocouples are widely used as temperature sensors.
In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It is a measure of the rate of heat transfer inside a material. It has units of m2/s. Thermal diffusivity is usually denoted by lowercase alpha, but a, h, κ (kappa), K, ,D, are also used.
The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m−1·K−1.
Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout. Thermal conductivity, frequently represented by k, is a property that relates the rate of heat loss per unit area of a material to its rate of change of temperature. Essentially, it is a value that accounts for any property of the material that could change the way it conducts heat. Heat spontaneously flows along a temperature gradient. For example, heat is conducted from the hotplate of an electric stove to the bottom of a saucepan in contact with it. In the absence of an opposing external driving energy source, within a body or between bodies, temperature differences decay over time, and thermal equilibrium is approached, temperature becoming more uniform.
Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment.
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.
The R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat, in the context of construction. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.
Thermal analysis is a branch of materials science where the properties of materials are studied as they change with temperature. Several methods are commonly used – these are distinguished from one another by the property which is measured:
The autoignition temperature or self-ignition temperature, often called spontaneous ignition temperature or minimum ignition temperature and formerly also known as kindling point, of a substance is the lowest temperature at which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. This temperature is required to supply the activation energy needed for combustion. The temperature at which a chemical ignites decreases as the pressure is increased.
Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form, and eventually lead to structural failure.
The thermal properties of soil are a component of soil physics that has found important uses in engineering, climatology and agriculture. These properties influence how energy is partitioned in the soil profile. While related to soil temperature, it is more accurately associated with the transfer of energy throughout the soil, by radiation, conduction and convection.
In thermodynamics, a material's thermal effusivity, also known as thermal responsivity, is a measure of its ability to exchange thermal energy with its surroundings. It is defined as the square root of the product of the material's thermal conductivity and its volumetric heat capacity or as the ratio of thermal conductivity to the square root of thermal diffusivity.
Junction temperature, short for transistor junction temperature, is the highest operating temperature of the actual semiconductor in an electronic device. In operation, it is higher than case temperature and the temperature of the part's exterior. The difference is equal to the amount of heat transferred from the junction to case multiplied by the junction-to-case thermal resistance.
In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density, heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m2). It has both a direction and a magnitude, and so it is a vector quantity. To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small.
A heat flux sensor is a transducer that generates an electrical signal proportional to the total heat rate applied to the surface of the sensor. The measured heat rate is divided by the surface area of the sensor to determine the heat flux.
In heat transfer, thermal engineering, and thermodynamics, thermal conductance and thermal resistance are fundamental concepts that describe the ability of materials or systems to conduct heat and the opposition they offer to the heat current. The ability to manipulate these properties allows engineers to control temperature gradient, prevent thermal shock, and maximize the efficiency of thermal systems. Furthermore, these principles find applications in a multitude of fields, including materials science, mechanical engineering, electronics, and energy management. Knowledge of these principles is crucial in various scientific, engineering, and everyday applications, from designing efficient temperature control, thermal insulation, and thermal management in industrial processes to optimizing the performance of electronic devices.
The laser flash analysis or laser flash method is used to measure thermal diffusivity of a variety of different materials. An energy pulse heats one side of a plane-parallel sample and the resulting time dependent temperature rise on the backside due to the energy input is detected. The higher the thermal diffusivity of the sample, the faster the energy reaches the backside. A laser flash apparatus (LFA) to measure thermal diffusivity over a broad temperature range, is shown on the right hand side.
The 3ω-method or 3ω-technique, is a measurement method for determining the thermal conductivities of bulk material and thin layers. The process involves a metal heater applied to the sample that is heated periodically. The temperature oscillations thus produced are then measured. The thermal conductivity and thermal diffusivity of the sample can be determined from their frequency dependence.
Heat flux measurements of thermal insulation are applied in laboratory and industrial environments to obtain reference or in-situ measurements of the thermal properties of an insulation material. Thermal insulation is tested using nondestructive testing techniques relying on heat flux sensors. Procedures and requirements for in-situ measurements are standardized in ASTM C1041 standard: "Standard Practice for In-Situ Measurements of Heat Flux in Industrial Thermal Insulation Using Heat Flux Transducers".
The transient hot wire method (THW) is a very popular, accurate and precise technique to measure the thermal conductivity of gases, liquids, solids, nanofluids and refrigerants in a wide temperature and pressure range. The technique is based on recording the transient temperature rise of a thin vertical metal wire with infinite length when a step voltage is applied to it. The wire is immersed in a fluid and can act both as an electrical heating element and a resistance thermometer. The transient hot wire method has advantage over the other thermal conductivity methods, since there is a fully developed theory and there is no calibration or single-point calibration. Furthermore, because of the very small measuring time there is no convection present in the measurements and only the thermal conductivity of the fluid is measured with very high accuracy.
{{cite journal}}
: Cite journal requires |journal=
(help)